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ABSTRACT
Bounded Max-Sum is a message-passing algorithm for solving Dis-
tributed Constraint Optimization Problems able to compute solu-
tions with a guaranteed approximation ratio. Although its approx-
imate solutions were empirically proved to be within a small per-
centage of the optimal solution on low and moderate dense prob-
lems, in this paper we show that a simple modification systemati-
cally provides even better solutions. This is especially relevant in
critical applications (e.g. disaster response scenarios) where the
accuracy of solutions is of vital importance.

1. INTRODUCTION
Recently, significant research effort has sought to apply coordi-

nation techniques to control physical devices that are able to ac-
quire information from the environment. In this context, Decen-
tralized coordination techniques are a very important topic of re-
search. A common approach is to cast the problem as a multi-
agent distributed constraint optimization problem (DCOP), where
the possible actions that agents can take are associated with vari-
ables and the utility for taking joint actions are encoded with (soft)
constraints [11]. The set of constraints define a global utility func-
tion F (x) to be optimized via decentralized coordination of the
agents. In general, complete algorithms [7, 6, 9] (i.e. algorithms
that find the true optimum) exhibit an exponentially increasing co-
ordination overhead, which makes them useless in many practical
situations.

Approximate algorithms constitute a very interesting alternative.
They require little computation and communication at the cost of
sacrificing optimality. There are several examples showing that
they can provide solutions of very good quality [3, 5].

A significant breakthrough along this line of work was the Bounded
Max-Sum algorithm (BMS) [11]. This algorithm provides, with
very little coordination, solutions that are very close to the optimum
on low and moderate dense problems. Thus, BMS is especially
suitable for critical applications like disaster response, where it is
critical to obtain almost instantly, very accurate solutions [13, 14,
10]. In this problems there are multiple mobile sensors that gather
information in crisis situations. These mobile sensors could be au-
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tonomous ground robots or unmanned aerial vehicles. In either
case, while patrolling through the disaster area, these sensors need
to keep track of the continuously changing state of spatial phenom-
ena, such as temperature or the concentration of potentially toxic
chemicals.

Arguably, the most interesting feature of BMS is that it comes
with a guarantee approximation ratio, meaning that its approxi-
mate solution has a utility which is no more than a factor away
from the optimum. Clearly, large values of the ratio reflect lack
of confidence in the solution. There are two possible reasons for a
large ratio: i) the algorithm failed in finding a solution close to the
optimal, ii) the approximation ratio is not tight. In a recent paper,
Rollon and Larrosa [12] addressed the second issue and proposed
an improved BMS (IBMS) with a much tighter upper bound. In
this paper, we consider the first issue and propose a modification of
BMS (that we call RN-BMS) with which tighter lower bounds are
obtained.

The three algorithms under consideration (BMS, IBMS and our
RN-BMS) relax the problem transforming some n-ary utility func-
tions into unary. As we show, the unary function of BMS promotes
a risk-averse behaviour of the agent, when guessing the information
lost throughout the relaxation. IBMS promotes a risk-loving be-
haviour. Our algorithm, RN-BMS, allows a risk-neutral behaviour.
Our experiments, show that RN-BMS systematically obtains better
solutions.

2. PRELIMINARIES
In this Section we review the main elements to contextualize

our work. Definitions and notation are borrowed almost directly
from [11]. We urge the reader to visit that reference for more de-
tails and examples.

2.1 DCOP
A Distributed Constraint Optimization Problem (DCOP) is a tu-

ple P = (A,X,D,F), where A = {A1, . . . ,Ar} is a set of
agents, and X = {x1, . . . , xn} and D = {d1, . . . ,dn} are vari-
ables and domains. F = {f1, . . . , fe} is a set of cost functions.
The objective function is,

F (x) =

e∑
j=1

fj(x
j)

where xj ⊆ X is the scope of fj . A solution is a complete as-
signment x. An optimal solution is a complete assignment x∗ such
that ∀x, F (x∗) ≥ F (x). The usual task of interest is to find x∗

through the coordination of the agents.
In the applications under consideration, the agents search for

the optimum via decentralized coordination. We assume that each



agent can control only its local variable(s) and has knowledge of,
and can directly communicate with, a few neighboring agents. Two
agents are neighbors if there is a relationship connecting variables
and functions that the agents control.

The structure of a DCOP problem P = (A,X,D,F) can be
transformed into a factor graph. A factor graph is a bipartite graph
having a variable node for each variable xi ∈ X, a factor node for
each local function fj ∈ F, and an edge connecting variable node
xi to factor node fj if and only if xi is an argument of fj .

2.2 Max-Sum Algorithm
The Max-Sum algorithm [2, 1] is a message-passing algorithm

for solving DCOP problems. It operates over a factor graph by
sending functions (a.k.a., messages) along its edges. Edge (i, j)
has associated two messages qi→j , from variable node xi to func-
tion node fj , and rj→i, from function node fj to variable node xi.
These messages are defined as follows:

• From variable to function:

qi→j(xi) = αij +
∑

k∈Mi\j

rk→i(xi)

whereMi is a vector of function indexes, indicating which
function nodes are connected to variable node xi, and αij is
a normalizing constant to prevent the messages from increas-
ing endlessly in cyclic graphs.

• From function to variable:

rj→i(xi) = max
xj\xi

{fj(xj) +
∑

k∈Nj\i

qk→j(xk)}

where Nj is a vector of variable indexes, indicating which
variable nodes are connected to function node fj and xj \
xi = {xk | k ∈ Nj \ i}

Max-Sum is a distributed synchronous algorithm, since the agent
controlling node i has to wait to receive messages from all its neigh-
bors but j, to be able to compute (and send) its message to j.
When the factor graph is cycle free, the algorithm is guaranteed
to converge to the global optimal solution. Once the convergence
is reached, each variable node can compute function,

zi(xi) =
∑

k∈Mi

rk→i(xi)

The optimal solution is maxxi{zi(xi)} and the optimal assignment
x∗i = argmaxxi{zi(xi)}. When the factor graph is cyclic, the
algorithm may not converge to the optimum and only provides an
approximation.

3. PREVIOUS BOUNDED MAX-SUM ALGO-
RITHMS

The Bounded Max-Sum algorithms, BMS [11] and weak IBMS
and IBMS [12], are approximation algorithms built on the Max-
Sum algorithm. From a possibly cyclic problem P , the idea is to
remove cycles in its factor graph by ignoring dependencies between
functions and variables which have the least impact on the solution
quality, producing a new acyclic problem. Then, Max-Sum is used
to optimally solve the acyclic problem while simultaneously com-
puting the approximation ratio. IBMS is the combination of weak
IBMS and BMS. A more detailed description follows.

For the sake of simplicity, we will restrict ourselves to the case
of binary functions fj(xi, xk). The extension to general functions

is direct. The algorithms works in three phases, each one imple-
mentable in a decentralized manner (see [11] for further details).
In this section, we will restrict our attention to the first and second
phases. The third phase of BMS, weak IBMS and our RN-BMS
will be discussed in a separate section (see Section 5).

3.1 Bounded Max-Sum Algorithm (BMS)
The BMS algorithm [11] works as follows:

• Relaxation Phase: First, the algorithm assigns a weight wij

to each edge (i, j) of the original factor graph measuring
the impact that the factor may have in the optimal solution.
Then, it finds a maximum spanning tree T with respect to
the weights. Next, the original problem P is transformed
into an acyclic one P̃ having the spanning tree T as factor
graph. This is done as follows: for each edge (i, j) in the
original graph that does not belong to the tree, the cost func-
tion fj(xi, xk) is transformed into another function f̃j(xk)
defined as,

f̃j(xk) = min
xi

fj(xi, xk)

Note that the objective function of P̃ is

F̃ (x) =
∑

(i,j),(k,j)∈T

fj(xi, xk) +
∑

(i,j)/∈T

f̃j(xk)

• Solving Phase: BMS solves P̃ with Max-Sum. Let x̃ be
the solution of this problem. Since the factor graph of P̃ is
acyclic, x̃ is its optimal assignment. Obviously, F (x̃) is a
lower bound of the optimal solution (F (x̃) ≤ F (x∗)).

3.2 Weak Improved BMS (weak IBMS)
The weak IBMS algorithm [12], which allows the computation

of better upper bounds (see Section 5), works as follows:

• Relaxation Phase: The original problem P is transformed
into an acyclic one P̂ . For the transformation, the cost func-
tion fj(xi, xk) of each edge (i, j) in the original graph that
does not belong to the tree is transformed into another func-
tion f̂j(xk) defined as,

f̂j(xk) = max
xi

fj(xi, xk)

Thus, the objective function of P̂ is

F̂ (x) =
∑

(i,j),(k,j)∈T

fj(xi, xk) +
∑

(i,j)/∈T

f̂j(xk)

• Solving Phase: weak IBMS solves P̂ with Max-Sum. Let x̂
be the solution of this problem. As with BMS, it is obvious
that F (x̂) is a lower bound of the optimal solution (F (x̂) ≤
F (x∗)).

4. IMPROVING THE LOWER BOUND OF
BMS AND WEAK IBMS

Consider a problem where variables have three domain values
{a, b, c}. Let fj(xi, xk) be the cost function depicted in Figure 1
(first table). Let us suppose that we apply one of the previous algo-
rithms and that fj(xi, xk) is one of the cost functions that needs to
be removed. Both algorithms, BMS and weak IBMS, will replace
the binary function fj(xi, xk) by a unary one. Figure 1 (second ta-
ble) shows function f̃j(xk) computed by BMS and Figure 1 (third



table) shows f̂j(xk) computed by weak IBMS. Clearly, that means
that the new, relaxed, problem will lose the connection between
xi and xk. In other words, the new problem will have no further
knowledge about how good the different combinations of values
are. In turn, there will be a new unary function. Since, this unary
function assigns utilities to the different values, it will increase or
decrease the likeliness of the different values of xk of being in the
solution.

As we show next, the idea behind RN-BMS is to compute a unary
function that promotes the behaviour of risk-neutral agent. For the
sake of the discussion, let us look at Figure 1 (first table) and con-
sider the different values for xk.

• Value a is the best option in a worst-case scenario. It will
provide an utility of at least 10, which is more that what the
other two values can guarantee. Thus, it would be the choice
of a risk-averse agent. Figure 1 (second table) shows that this
is the rational behind BMS, since f̃j(xk) assigns the highest
utility to a.

• Value b is the best option in a best-case scenario. It may
provide the highest utility (1100), which is more that what
the other two values can offer. But this will only happen if
value a is also the choice for variable xi, and the other two
options for xi are really bad. Thus, it would be the choice of
a risk-loving agent. Figure 1 (third table) shows that this is
the rational behind IBMS, since f̂j(xk) assigns the highest
utility to b.

• However, value c seems the most neutral option, since there
are 2 out of 3 very good options. This would be the choice of
a risk-neutral agent. This behaviour is encoded if the unary
function is computed taking (possibly, weighted) averages.
This is the rational of our new algorithm RN-BMS.

The Risk-Neutral Bounded Max-Sum algorithm (RN-BMS) works
as follows.

• Relaxation Phase: RN-BMS assumes that, each agent has
belief functions on the neighbour variables. Consider the
agent controlling variable xk. Let xi be a neighbour variable
and fj(xi, xk) be the corresponding utility function. The
agent has function bj(xi) which measures, for each value in
the domain of xi, its belief on how likely it is that the value
will be in an optimal solution. Then, if function fj(xi, xk) is
to be eliminated, it is replaced by a unary function fN

j (xk)
defined as,

fN
j (xk) =

∑
xi

fj(xi, xk)bj(xi)

Thus, the objective function of PN is

FN (x) =
∑

(i,j),(k,j)∈T

fj(xi, xk) +
∑

(i,j)/∈T

fN
j (xk)

For the sake of illustration and further experimentation, we
consider the simplest case, in which beliefs are probabilities,
and the agent considers all values equally probable. Under
this assumption, the unary function contains the average util-
ity over the binary extensions. Figure 1 (fourth table) shows
the resulting unary function in our running example.

Clearly, our framework allows more sophisticated believe
functions. For instance, the agents could believe that some
values are more relevant than others based on their previous
experience.

• Solving Phase: RN-BMS solves PN with Max-Sum. Let
xN be the solution of this problem. As in the previous cases,
it is obvious that xN is a lower bound of the optimal solution
(F (xN ) ≤ F (x∗)).

5. APPROXIMATION RATIO
An approximate algorithm providing an approximate solution x

and a guarantee approximation ratio ρ ≥ 1, means that its solution
has a utility F (x) which is no more than a factor ρ away from the
optimum (i.e, F (x) ≤ F (x∗) ≤ ρF (x)). This approximation
ratio is computed in the third phase, called bounding phase, of the
bounded max-sum algorithms as follows.

• BMS. Letwij = maxxk{maxxi fj(xi, xk)−minxi fj(xi, xk)}
and W =

∑
(i,j)/∈T wij . In [11], it is proved that,

F (x∗) ≤ F̃ (x̃) +W

We can rewrite the previous bounding expression as,

F (x∗) ≤ F̃ (x̃) +W

F (x̃)
F (x̃)

Therefore, ρ̃ = F̃ (x̃)+W
F (x̃)

is a guarantee approximation ratio
for BMS.

• Weak IBMS. In [12], it is proved that,

F (x∗) ≤ F̂ (x̂)

Therefore, ρ̂ = F̂ (x̂)
F (x̂)

is a guarantee approximation ratio for
weak IBMS.

• RN-BMS. Let

wN
ij = max

xk

{max
xi

fj(xi, xk)−
∑
xi

fj(xi, xk)bj(xi)}

and WN =
∑

(i,j)/∈T w
N
ij . Following a reasoning similar to

the BMS case, one can see that

F (x∗) ≤ FN (xN ) +WN

Therefore, ρN = FN (xN )+WN

F (xN )
is a guaranteed approxima-

tion ratio for RN-BMS.

In [12], it is proved that,

F̂ (x̂) ≤ F̃ (x̃) +W

Since IBMS is the combination of BMS and weak IBMS, its guar-
antee approximation ratio is ρI = F̂ (x̂)

max{F (x̃),F (x̂)} .
Following similar reasonings, one can see that

F̂ (x̂) ≤ FN (xN ) +WN

However, there is no theoretical dominance between the upper bounds
obtained by BMS and RN-BMS, nor by their lower bounds. Thus,
we cannot establish any dominance between the three approxima-
tion ratios ρ̃, ρ̂, and ρN . However, we can establish a ratio

ρ =
F̂ (x̂)

max{F (x̃), F (x̂), F (xN )}
which dominates all of them. However, it requires the execution of
the three algorithms.



xk xi fj
a a 10
a b 11
a c 12
b a 1100
b b 0
b c 0
c a 1000
c b 1000
c c 0

xk f̃j
a 10
b 0
c 0

xk f̂j
a 12
b 1100
c 1000

xk fN
j

a 11
b 366
c 666

Figure 1: Example of a binary utility function and its unary relaxation as computed by BMS, IBMS and RN-BMS
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Figure 2: Percentage relative error of the lower bound obtained by BMS (F (x̃)), weak IBMS (F (x̂)), and RN-BMS (F (xN )) to the
optimum F (x∗).

6. EMPIRICAL EVALUATION
The main purpose of the experiments is to evaluate the improve-

ment of the lower bound F (xN ) with respect to the BMS and weak
IBMS lower bounds F (x̃) and F (x̂), respectively. We consider the
same set of problems from the ADOPT repository1 used in [11].
These problems represent graph coloring problems with two dif-
ferent link densities (i.e., the average connection per agent) and
different number of nodes. Each agent controls one node (i.e., vari-
able), with domain |di| = 3, and each edge of the graph represents
a pairwise constraint between two agents. Each edge is associ-
ated with a random payoff matrix, specifying the payoff that both
agents will obtain for every possible combination of their variables’
assignments. Each entry of the payoff matrix is a real number sam-
pled from two different distributions: a gamma distribution with
α = 9 and β = 2, and a uniform distribution with range (0, 1). For
each configuration, we report average values over 25 repetitions.

1http://teamcore.usc.edu/dcop

For the sake of comparison, we compute the optimal utility with
a complete centralized algorithm, although this value can only be
computed up to 12 agents with a complete decentralized algorithm,
as shown in [11].

Figure 2 shows the percentage relative error of the lower bound
obtained by BMS (F (x̃)), weak IBMS (F (x̂)), and RN-BMS (F (xN ))
over the optimum F (x∗) for the different link densities and payoff
distributions. The percentage relative error of a given lower bound
LB to the optimum F (x∗) is

F (x∗)− LB
F (x∗)

∗ 100

The improvement of RN-BMS is very relevant. On the one hand,
recall that these class of algorithms are being developed for appli-
cations in which the accuracy of the solution is extremely impor-
tant. On the other hand, although BMS and weak IBMS are already
very accurate, the approximate solution found by RN-BMS is even
tighter.
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Figure 3: Upper bounds obtained by BMS (F̃ (x̃)+W ), (weak) IBMS(F̂ (x̂)), and RN-BMS (FN (xN )+WN ) along with the optimum
(F (x∗)).

Figure 3 shows the upper bound obtained by BMS (F̃ (x̃)+W ),
(weak) IBMS(F̂ (x̂)), and RN-BMS (FN (xN ) +WN ). For com-
parison, the figure also reports the optimum (F (x∗)). The be-
haviour of all algorithms is very similar across all link densities and
payoff distributions. As theoretically proved, weak IBMS always
computes the tightest upper bound. Note that, although theoreti-
cally incomparable, RN-BMS is always superior to BMS across all
instances.

Figure 4 shows the approximation ratios obtained by BMS (ρ̃),
weak IBMS (ρ̂) and RN-BMS (ρN ). The figure also reports the best
approximation ratio (ρ), that is, using the best upper bound (given
by weak IBMS) and the best lower bound. As discussed in [12],
computing such ratio requires to linearly increase the coordination
work. Weak IBMS is superior to the other two single algorithms,
mainly due to its upper bound accuracy. Clearly, the combination
of the three algorithms computes a good approximate solution with
very high confidence.

7. RELATED WORK
There are other two incomplete algorithms that can provide guar-

antees on the worst-case solution quality of their solutions at design
time: k-optimality [8] and t-optimality [4]. The idea of these algo-
rithms is to form coalitions of agents and to find the local optima
solutions for all agents within the coalitions. This local optima is
guaranteed to be within a predefined distance from the global opti-
mal solution.

Very recently, [15] proposed a framework were different coalition-
based local optimality schemes can be described and defined a
new criteria called s-size bounded optimality. The complexity of
these algorithms depend on the number of coalitions and their size.
Therefore, in practice, these algorithms are used with relatively
small values of their control parameter.

In [11], it was shown that k-optimality provided significantly
worst quality guarantees than BMS for different values of k. In [12],
it was shown that s-size-bounded-distance provided worse approx-
imation ratios than IBMS and BMS, even using the improved min-
imum maximum reward and minimum fraction bounds proposed
in [16] and a relatively high value of the parameter s.

8. CONCLUSIONS AND FUTURE WORK
In this paper we introduced a new algorithm, called Risk-Neutral

Bounded Max-Sum (RN-BMS), based on the Bounded Max-Sum
algorithm. We show that it implements a Risk-Neutral approach
to Bounded Max-Sum, in contrast to BMS and IBMS which im-
plement risk-loving and risk-averse approaches, respectively. Our
experiments show that RN-BMS systematically provides better so-
lutions.

Our experiments assume that agents have no rich knowledge
about which values are more likely to be in the optimal solution.
However, our framework allows more elaborated implementation.
Its impact remains as future work.
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Figure 4: Approximation ratio obtained by BMS (ρ̃), weak IBMS (ρ̂), RN-BMS (ρN ), and the best among them (ρ).
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