
Constraint Optimization Techniques for

MultiObjective Branch and Bound Search

Emma Rollon1 and Javier Larrosa1

Universitat Politècnica de Catalunya
Jordi Girona 1-3, Edificio Omega — 08034 Barcelona, Spain
erollon@lsi.upc.edu, larrosa@lsi.upc.edu

1 Introduction

In Constraint Optimization Problems (COP) the task is to find the best solu-
tion according to some preferences expressed by means of cost functions [1].
Branch and Bound (BB) [2] is an exact general search algorithm for COPs
solving. BB is the most usual algorithm in the mono-objective case. The effi-
ciency of BB depends on its hability to detect dead-ends, that is, nodes that
do not have any solution below. Dead-end detection is done with a heuris-
tic function that computes an underestimation or lower bound of the current
subproblem. In recent years, many heuristic functions have been proposed.
For instance, all weighted CSP local consistencies [3, 4] can be used for this
purpose. Another alternative is Mini-bucket elimination (MBE) [5]. MBE is a
generic inference method well-known in Constraint Programming [6]. It com-
putes a lower bound of the optimal solution (assuming minimization). There-
fore, MBE is usually used inside BB to improve its pruning capability.

Many real world problems involve multiple measures of performance, or
objectives, which should be optimized simultaneously. The simultaneous op-
timization of multiple, possibly competing, objective functions deviates from
single function optimization in that it seldom admits a single, perfect solution.
Instead, multiobjective constraint optimization problems tend to be charac-
terized by a family of alternatives which must be considered equivalent in the
absence of information concerning the relevance of each objective relative to
the others.

In MultiObjective Constraint Optimization Problems the task is to find the
efficient frontier, that is, the set of equivalent or non-dominated costs of the
set of feasible solutions. MultiObjective Branch and Bound search (MO-BB)
has not been widely studied in the multiobjective context [7]. One reason is
the lack of general approximation algorithms to compute lower bounds. In
our recent work [8], we have extended MBE from mono-objective to multi-
objective optimization problems, yielding MultiObjective Mini-Bucket Elimi-
nation (MO-MBE). MO-MBE computes a lower bound set [9] of the efficient



2 Emma Rollon and Javier Larrosa

frontier. As a consequence, MO-MBE can be used as a heuristic function in
a multiobjective branch and bound algorithm. In this paper we describe how
MO-MBE can be combined with multiobjective branch and bound search.
The resulting algorithm is a simple, extremely generic, exact multiobjective
solving method. Our experiments on bi-objective combinatorial auctions and
bi-objective weighted vertex cover problems demonstrates the performance of
the new approach.

The structure of this paper is as follows: Section 2 provides some prelim-
inaries on multiobjective optimization. Section 3 introduces MultiObjective
Mini-Bucket Elimination. Section 4 describes the multiobjective extension of
a generic branch and bound algorithm and shows how MO-MBE can be in-
tegrated as a heuristic function. Section 5 reports some experimental results.
Finally, Section 6 gives some conclusions and points out some directions of
future work.

2 Preliminaries

Let X = (x1, . . . , xn) be an ordered set of variables and D = (D1, . . . , Dn) an
ordered set of domains. Domain Di is a finite set of potential values for xi. We
call d the largest domain size. The assignment (i.e, instantiation) of variable xi

with a ∈ Di is noted (xi := a). A tuple is an ordered set of assignments to dif-
ferent variables (xi1 := ai1 , . . . , xik

:= aik
). The set of variables (xi1 , . . . , xik

)
assigned by a tuple t, noted var(t), is called its scope. The size of var(t) is the
arity of t. When the scope is clear by the context, we omit the variables and
express the tuple as a sequence of domain values (ai1 . . . aik

). We focus on two
basic operations over tuples: the projection of t over A ⊆ var(t), noted t[A], is
a sub-tuple of t containing only the instantiation of variables in A. Let t and s

be two tuples having the same instantiations to the common variables. Their
join, noted t · s, is a new tuple which contains the assignments of both t and
s. Projecting a tuple t over the empty set t[∅] produces the empty tuple λ. We
say that a tuple t is a complete instantiation when var(t) = X . Sometimes,
when we want to emphasize that a tuple is a complete instantiation we will
call it X .

Let consider problems with one objective. A weighted CSP (WCSP) [10]
is a tuple P = (X ,D,F ,⊤), where X and D are variables and domains.
F = {f1, . . . , fr} is a set of cost functions. Each cost function fi is defined
over Yi ⊆ X , called its scope. fi associates costs (i.e., numbers) to tuples t

such that var(t) = Yi. We make the usual assumption of costs being natural
numbers. ⊤ bounds the maximum acceptable cost of solutions. The objective
function is, F (X) =

∑r

i=1 fi(Yi). A solution is a complete assignment X such
that F (X) < ⊤. An optimal solution is a solution X such that ∀X ′, F (X) ≤
F (X ′). The optimum of the objective function is the value F (X). The task
in a WCSP is to find the optimum and one (of the possibly many) optimal
solutions X .



Constraint Optimization Techniques for MultiObjective Optimization 3

Let consider problems with p objectives. ⊤ = (⊤1, . . . ,⊤p) is a vector
where each ⊤j ∈ N is the maximum acceptable cost for the objective j. A
p-vector v = (v1, . . . , vp) is a vector of p components where each vj ∈ N and
vj ≤ ⊤j . Let v and u be two distinct p-vectors. v dominates u (noted v < u)
if ∀j, vj ≤ uj . The sum of p-vectors is defined as,

v + u =

{

⊤ ∃j, vj + uj ≥ ⊤j

(v1 + u1, . . . , vp + up) otherwise.

Let S be a set of p-vectors. We define its non-domination closure as 〈S〉 =
{v ∈ S |∀u ∈ S, u 6< v}. Let S1 and S2 be two sets closed under non-
domination. We say that S1 dominates S2 (noted S1 < S2) if ∀v ∈ S2, ∃u ∈
S1 s.t u < v. A p-function f is defined over a set of variables Y ⊆ X such that
f(Y ) is a p-vector. Let xi ∈ Y and a ∈ Di, the partial instantiation of f with
xi := a, noted fxi:=a, is the new function obtained from f in which xi has
been fixed to a. Note that when xi is the only variable of f , its instantiation
produces a constant p-vector.

A multiobjective weighted constraint satisfaction problem (MO-WCSP) is
defined as P = (X ,D,F , ⊤), where X = {x1, . . . , xn} and D = {D1, . . . , Dn}
are variables and domains. ⊤ contains, for each objective, the maximum ac-
ceptable cost. F is a set of p-functions that define the multiobjective func-
tion F (X) =

∑

f∈F f(X). Given a complete assignment X , we say that it
is consistent iff F (X) 6= {⊤}. For clarity reasons, we consider that all the
objective functions are additive. However, the same ideas posed in the MO-
WCSP framework can be used for modelling problems where the objective
functions are, for example, multiplicative (i.e. Probabilistic Frameworks [11]),
or a combination of both. A solution is a consistent complete assignment. In
the constraint programming context, the usual task is to find an optimal solu-
tion. A solution X is efficient or Pareto optimal if there is no better solution
(i.e., ∀X ′, F (X ′) 6< F (X)). XE is the set of efficient solutions and EF is the
corresponding efficient frontier. The task in a MO-WCSP is to compute EF
(and, possibly, one or all efficient solutions for each of its elements).

3 Mini-Bucket Elimination

MultiObjective Mini-Bucket Elimination (MO-MBE) [8] is the extension of
the well-known mono-objective approximation algorithm Mini-Bucket Elimi-
nation (MBE) [5] to the multiobjective context. MO-MBE is a generic approx-
imation algorithm that can be used to bound the efficient frontier when the
problem is too difficult to be solved exactly. Assuming minimization problems,
MO-MBE provides a lower bound set of the efficient frontier.

In the following, we augment p-functions by letting them to return a non-
dominated set of p-vectors. MO-MBE uses two operations over p-functions:
The sum of two p-functions f and g, noted f + g, is a new p-function that re-
turns for each tuple the sum of the corresponding p-vectors, previous removal



4 Emma Rollon and Javier Larrosa

f : x1 x2

a a {(3, 2), (2, 8)}
a b {(4, 10)}
b a {⊤}
b b {⊤}

g: x2 x3

a a {(1, 2)}
a b {(2, 1)}
b a {(6, 2), (11, 1)}
b b {⊤}

f + g: x1 x2 x3

a a a {(4, 4), (3, 10)}
a a b {(5, 3), (4, 9)}
a b a {(10, 12)}
a b b {⊤}
b a a {⊤}
b a b {⊤}
b b a {⊤}
b b b {⊤}

(f + g) ↓ x3: x1 x2

a a {(4, 4), (3, 10), (5, 3)}
a b {(10, 12)}
b a {⊤}
b b {⊤}

Fig. 1. Sum and projection over 2-functions. ⊤ = (15, 18).

of dominated ones. The elimination of variable xi from p-function f , noted
f ↓ xi, is a new p-function not mentioning xi that returns for each tuple the
best p-vectors with respect to the eliminated variable. Formally, let f and g

be two p-functions:

• Their sum h = f + g is defined as,

h(t) = 〈{v| t = t′ · t′′,v = v′ + v′′,v′ ∈ f(t′),v′′ ∈ g(t′′)}〉

• The elimination of xi, h = f ↓ xi is defined as,

h(t) = 〈{v | ∀a ∈ Di, v ∈ f(t · (xi := a))}〉

Consider as an example the 2-functions f and g in Figure 1 with ⊤ =
(15, 18) under domains {a, b}. The sum f +g is a 2-function (f +g)(x1, x2, x3).
Note that in (f+g)(a, b, a), the sum of the 2-vectors (4, 10) and (11, 1) is ⊤. As
⊤ is dominated by (10, 12), it has been removed. The elimination of variable
x3 from f+g is a 2-function (f+g) ↓ x3(x1, x2). Note that in (f+g) ↓ x3(a, a),
the 2-vector (4, 9) has been removed as a consequence of the non-domination
closure. Moreover, ⊤ has also been removed from (f + g) ↓ x3(a, b) for the
same reason.

MO-MBE (Figure 2) has a control parameter z. It processes the problem
eliminating variables one by one. For each variable xi, the algorithm computes
the so called bucket of xi (line 2), noted Bi, which contains all p-functions in
F having xi in its scope. Ideally, a new p-function would be computed by
summing all functions in Bi and subsequently eliminating xi. Since this is
very space consumming, the bucket is partitioned into so-called mini-buckets
(line 3). Each mini-bucket contains p-functions such that they do not jointly
mention more than z + 1 variables. In each mini-bucket the functions are
summed and subsequently xi is eliminated (line 4). Then, F is updated by
removing the functions in Bi and adding each gik

(line 5). After the last
elimination, only an empty-scope p-function (i.e., a non-dominated set of p-
vectors) remains. It contains a lower bound set of the original problem (line 7).



Constraint Optimization Techniques for MultiObjective Optimization 5

function MO-MBE(X ,D,F , ⊤, z)
1. for each i = n . . . 1 do

2. Bi := {h ∈ F | xi ∈ var(h)};
3. {Pi1 , . . . ,Pir

} :=Partition(z,Bi);
4. for each k = 1..r do gik

:= (
P

f∈Pik

f) ↓ xi;

5. F := (F ∪ {gi1 , . . . , gir
}) − Bi;

6. endfor

7. return g1

endfunction

Fig. 2. Description of MO-MBE. The input is a MO-WCSP instance (X ,D,F , ⊤).
The output is g1, a zero-arity p-function which contains a lower bound set of the
efficient frontier.

Note that, if MO-MBE returns {⊤} the problem does not have any solution.
In general, greater values of z increment the number of p-functions included
in each mini-bucket. Therefore, the lower bound set will be presumable closer
to the efficient frontier. However, greater values of z produce higher arity
functions which require more resources (i.e., space and time).

Theorem 1. [8] MO-MBE with accuracy parameter z is space O(e×
∏p−1

j=1 ⊤j×

dz−1) and time O(e×
∏p−1

j=1 ⊤
2
j ×dz), where e is the number of p-functions, ⊤j

is the bound of objective j, p is the number of objectives, and d is the largest
domain size.

4 Depth First Branch and Bound

MultiObjective Branch-and-Bound (MO-BB) is a recursive description of a
generic search schema for MO-WCSP solving. It searches depth-first the
tree defined by the problem. During search, MO-BB maintains a set of non-
dominated p-vectors corresponding to the best solutions found so far. In the
minimization case, those vectors are an upper bound set or top of the optimal
solution. When a new solution is found, its costs are added to the top and
the non-dominated ones are retained as new top. Moreover, for each partial
assignment, the algorithm computes a lower bound set using a bounding eval-
uation function, that is, an underestimation of its efficient frontier that can
be obtained in the remaining problem. If the lower bound set is dominated
by the top, the current path cannot lead to better solutions and the current
branch can be pruned. As a result, the algorithm backtracks to a previous
node.

In its description, MO-BB search (Figure 3) receives a set of variables X
and the set of its feasible values D, a set of p-functions F , a top vector ⊤ and a
non-dominated set EF . After an initial call MO-BB ((x1, . . . , xn), (D1, . . . , Dn),



6 Emma Rollon and Javier Larrosa

procedure MO-BB(X ,D,F , ⊤, EF)
1. if X = ∅ then EF := 〈EF ∪ F〉;
2. else

3. xi := Select(X );
4. for each a ∈ Di do

5. F ′ := {fxi:=a | f ∈ F};
6. if EF 6< LB(X − {xi},D − {Di},F

′, ⊤) then

7. MO-BB (X − {xi},D − {Di},F
′, ⊤, EF);

8. endif

9. endfor

10. endif

endprocedure

Fig. 3. Multi-Objective Depth-First Branch and Bound for optimization task.

(f1, . . . , fe), ⊤, EF = {⊤}), the algorithm returns the efficient frontier of the
problem in EF . During search, the current efficient frontier is kept in EF .
When no variable remains, the current assignment is one of the best solutions
found so far, so the efficient frontier is updated (line 1). Note that when there
is no more variable to assign, F contains an empty scope p-function, that is,
a constant p-function containing the optimal p-vectors of the current assign-
ment. Then, the algorithm adds the p-vectors in EF and F and closed them
under non-domination. When X is not empty, a variable is selected (line 3)
and the algorithm sequentially attempts the assignment of its values to the
p-functions in F (line 4-5). A lower bound set [9] of the cost of the current as-
signment is computed in the bounding evaluation function LB and compared
with the current efficient frontier (line 6). If the current assignment may be
extended, the search procedure proceeds by making a recursive call (line 7).
Otherwise, the algorithm is in a dead-end and backtracks.

The performance of the search algorithm can be increased by reducing the
explored search space. This reduction greatly depends on the bounding eval-
uation function. Therefore, the wisdom of the evaluation function to foresee
a dead-end as soon as possible is a key factor in the branch and bound al-
gorithm. MO-MBE can be executed inside branch and bound as a bounding
evaluation function in order to provide lower bound sets of every subproblem.
As MO-MBE is executed in each node, the control parameter z allows us to
trade time for accuracy. In one hand, greater values of z will result in tighter
lower bound sets. Therefore, the pruning capability of the algorithm will in-
crease. However, the execution time will also increase. On the other, lower
values of z will result in less tighter lower bound sets. However, the execution
time will decrease and, as a consequence, reduce the time spent in every node.



Constraint Optimization Techniques for MultiObjective Optimization 7

5 Experimental Results

We have tested our approach in two different domains: biobjective combinato-
rial auctions and biobjective weighted vertex cover problems. The purpose of
the experiments is to evaluate the performance of MO-BB using MO-MBE as
an heuristic evaluation function (i.e. MO-BBMOMBE) for solving MO-WCSP
problems. To that end, we compare MO-BBMOMBE with the ǫ-constraint ap-
proach [7] based on search. Regarding MO-BBMOMBE , experiments in the
mono-objective case show that low values of the control parameter z usually
provide reasonable good lower bounds with a very low cost [12]. Therefore,
we follow the same criteria and set the control parameter z = 2 in all the
experiments. For the ǫ-constraint approach, we use the well-known IlogSolver
6.1 as a solver engine. Moreover, the time spent for finding the ideal and nadir
point that defines lower and upper bounds on the objective values of efficient
solutions is not taken into account.

The time limit in all our experiments is 300 seconds. The execution time
for unsolved instances is considered as that time limit. Therefore, for each
domain, we report not just the cpu time, but also the percentage of solved
instances within the time limit. We run all the experiments on a Pentium IV
at 3GHz with 2GB of memory, running Linux.

5.1 Biobjective Combinatorial Auctions

Combinatorial auctions (CA) allow bidders to bid for indivisible subsets of
goods [13]. In risk-conscious auctions, the auctioneer wants to control the risk
of not being paid after a bid has been accepted, because it may cause large
losses in revenue [14]. Consider a set of goods {1, 2, . . . , n} that go on auc-
tion. There are m bids. Bid j is defined by the subset of requested goods
Xj ⊆ {1, 2, . . . , n}, the money offer bj and the probability of failure rj . The
auctioneer must decide which bids are to be accepted. If two bids have goods in
common, only one of them can be accepted. The first objective is to maximize
the auctioneer profit. The second objective is to minimize risk. Assuming in-
dependence, after a logarithmic transformation of probabilities, this objective
can also be expressed as an additive function.

We have generated mono-objective CA using the PATH model of CATS
generator [13] and randomly added payment failure probabilities to the bids
in the range 0.0 to 0.3. We experiment on instances with 20 and 50 goods,
varying the number of bids from 80 to 150. For each parameter configuration
we generate samples of size 25.

Figure 4 reports the results obtained for instances with 20 and 50 goods
corresponding to the plots on the right and on the left, respectively. MO-
BBMOMBE outperformes ǫ-constraint in both configurations. For instances
with 20 goods, MO-BBMOMBE solves all the instances within the time limit.
However, ǫ-constraint only solves completely instances with 80 bids. Moreover,
the solved percentage of ǫ-constraint decreases as the number of bids increases



8 Emma Rollon and Javier Larrosa

0

50

100

150

200

250

300

80 90 100 110 120 130 140 150

tim
e 

(s
ec

)

nb. bids

Path Combinatorial Auctions with 20 goods

mo-bb
e-constraint

0

50

100

150

200

250

300

80 90 100 110 120 130 140 150

tim
e 

(s
ec

)

nb. bids

Path Combinatorial Auctions with 50 goods

mo-bb
e-constraint

10

20

30

40

50

60

70

80

90

100

80 90 100 110 120 130 140 150

so
lv

ed
 (

%
)

nb. bids

mo-bb
e-constraint

10

20

30

40

50

60

70

80

90

100

80 90 100 110 120 130 140 150
so

lv
ed

 (
%

)

nb. bids

mo-bb
e-constraint

Fig. 4. Experimental results on bi-objective CA for 20 and 50 goods, respectively.
Path distribution. Time limit 300 seconds.

and it is quite low (20%) from 130 bids. It is important to note that, as the
time for unsolved instances is set to 300 seconds, its effect in the mean cpu time
is minimized. For instances with 50 goods, MO-BBMOMBE does not solve 4
instances with 145 bids and 9 with 150 bids. However, it is important to note
that those instances can be solved in less than 400 seconds. ǫ-constraint does
not solve completely any parameter configuration. Moreover, it fails in solving
all instances from 105 bids.

5.2 Biobjective Weighted Vertex Cover

Given a graph G = (V, E), a vertex cover is a subset of vertices S ⊆ V such
that ∀(u, v) ∈ E, either u ∈ S or v ∈ S. The minimum vertex cover is a vertex
cover of minimum size. In the weighted version every vertex u has an associated
weight w(u) and the weighted minimum vertex cover is a vertex cover S with
minimum F (S) =

∑

u∈S w(u). In the biobjective version each vertex u has
two weights w1(u) and w2(u) and the task is to minimize the two associated
objective functions. In our experiments we generated random graph instances
with parameters (N , E, C) where N is the number of vertices, E is the number
of edges and C is the maximum weight. Instances are generated by randomly
selecting E edges. For each vertex, two costs are randomly generated from the
interval [0 . . . C].



Constraint Optimization Techniques for MultiObjective Optimization 9

N E MO-BBMOMBE ǫ-constraint
(nb. vars) (nb. edges) time (sec.) % time (sec.) %

60 95 0.92 100 155.82 80
70 95 1.68 100 289.75 8
80 95 3.17 100 300 0
90 95 6.72 100 288 4

60 250 1.92 100 28.22 100
70 250 4.56 100 221.94 40
80 250 9.23 100 280.46 8
90 250 20.04 100 300 0

60 500 2.03 100 2.56 100
70 500 5.87 100 26.63 100
80 500 17.12 100 216.21 52
90 500 42.35 100 300 0

60 950 1.51 100 0.27 100
70 950 3.87 100 2.65 100
80 950 10.49 100 16.09 100
90 950 32.46 100 122.51 100

Fig. 5. Experimental results on biobjective weighted minimum vertex cover prob-
lems. Parameter C is set to 4. Mean values on 25 instances for each parameter
configuration. Time limit 300 seconds.

We tested on samples of size 25 for the following parameter configurations
({60, 70, 80, 90}, {95, 250, 500, 950}, 4). Figure 5 reports the results obtained.
The first and second column show the number of variables and edges, respec-
tively. The third and fourth columns report the mean cpu time and the per-
centage of solved instances within the time limit using MO-BBMOMBE . The
fifth and sixth column report the same information for ǫ-constraint approach.
The first thing to be observed is that MO-BBMOMBE is clearly superior for
all parameter configurations. MO-BBMOMBE solves all instances within the
time limit. However, ǫ-constraint is only able to solve completely instances
with 950 edges. When we fix the number of constraints and increase the num-
ber of variables, the efficiency of both approaches decreases. When fixing the
number of variables and increasing the number of constraints, the behaviour
of both approaches differs. Regarding MO-BBMOMBE , the solving time in-
creases until instances with 500 edges. For instances with 950 edges the time
diminishes. However, the solving time for ǫ-constraint always decreases.

6 Conclusions and Future Work

MultiObjective Branch and Bound (MO-BB) is a general search schema for
multiobjective constraint optimization problems. The search space is repre-
sented as a tree. The algorithm searches depth-first the tree defined by the
problem. Its output is the efficient frontier of the problem. The efficiency of
the algorithm greatly depends on its pruning ability which, in turn, depends
on the computation of a good lower bound set at each visited node.

MultiObjective Mini-Bucket Elimination (MO-MBE) is an approximation
algorithm for multiobjective constraint optimization problems. It has a control



10 Emma Rollon and Javier Larrosa

parameter z which allow us to trade time and space for accuracy. Its output
is a lower bound set of the efficient frontier of the problem. Therefore, it can
be executed inside branch and bound as a bounding evaluation function in
order to provide a lower bound set of every subproblem. We demonstrate the
effectiveness of MO-BB using MO-MBE as a bounding evaluation function
(i.e., MO-BBMOMBE) in biobjective combinatorial auctions and vertex cover
problems.

In our future work we want to evaluate the performance improvement
of MO-BBMOMBE when using an initial good approximation of the efficient
frontier. That initial approximation can be computed using approximate al-
gorithms to compute upper bounds [7]. Moreover, we want to continue inves-
tigating the symbiosis between constraint programming and multiobjective
optimization.

References

1. Bistarelli, S., Fargier, H., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G.:
Semiring-based CSPs and valued CSPs: Frameworks, properties and compari-
son. Constraints 4 (1999) 199–240

2. Freuder, E., Wallace, R.: Partial constraint satisfaction. Artificial Intelligence
58 (1992) 21–70

3. Larrosa, J., Schiex, T.: In the quest of the best form of local consistency for
weighted csp. In: Proc. of the 18th IJCAI, Acapulco, Mexico (2003)

4. de Givry, S., Heras, F., Larrosa, J., Zytnicki, M.: Existential arc consistency:
getting closer to full arc consistency in weighted csps. In: Proc. of the 19th

IJCAI, Edinburgh, U.K. (2005)
5. Dechter, R., Rish, I.: Mini-buckets: A general scheme for bounded inference.

Journal of the ACM 50 (2003) 107–153
6. Dechter, R.: Constraint Processing. Morgan Kaufmann, San Francisco (2003)
7. Ehrgott, M., Gandibleux, X.: Multiple Criteria Optimization. State of the Art.

Annotated Bibliographic Surveys. Kluwer Academic Publishers (2002)
8. Rollon, E., Larrosa, J.: Bucket elimination for multiobjective optimization prob-

lems. Journal of Heuristics 12 (2006) 307–328
9. Ehrgott, M., Gandibleux, X.: Bounds and bound sets for biobjective combina-

torial optimization problems. Lecture Notes in Economics and Mathematical
Systems 507 (2001) 241–253

10. Rossi, F., van Beek, P., Walsh, T.: 9. In: Handbook of Constraint Programming.
Elsevier (2006)

11. Fargier, H., Lang, J.: Uncertainty in constraint satisfaction problems: a proba-
bilistic approach. In: ECSQARU. (1993)

12. Kask, K., Dechter, R.: A general scheme for automatic generation of search
heuristics from specification dependencies. Artificial Intelligence 129 (2001)
91–131

13. K.Leuton-Brown, M., Y.Shoham: Towards a universal test suite for combinato-
rial auction algorithms. ACM E-Commerce (2000) 66–76

14. Holland, A.: Risk Management for Combinatorial Auctions. PhD thesis, Dept.
of Computer Science, UCC, Ireland. (2005)


