
J Heuristics (2006) 12: 307–328

DOI 10.1007/s10732-006-6726-y

Bucket elimination for multiobjective optimization
problems

Emma Rollón · Javier Larrosa

C© Springer Science + Business Media, LLC 2006

Abstract Multiobjective optimization deals with problems involving multiple measures of

performance that should be optimized simultaneously. In this paper we extend bucket elimi-

nation (BE), a well known dynamic programming generic algorithm, from mono-objective to

multiobjective optimization. We show that the resulting algorithm, MO-BE, can be applied to

true multi-objective problems as well as mono-objective problems with knapsack (or related)

global constraints. We also extend mini-bucket elimination (MBE), the approximation form

of BE, to multiobjective optimization. The new algorithm MO-MBE can be used to obtain

good quality multi-objective lower bounds or it can be integrated into multi-objective branch

and bound in order to increase its pruning efficiency. Its accuracy is empirically evaluated in

real scheduling problems, as well as in Max-SAT-ONE and biobjective weighted minimum

vertex cover problems.

Keywords Multiobjective optimization . Dynamic programming . Decomposition

methods . Global constraints

1. Introduction

In constraint satisfaction problems (CSPs) the task is to find values for a set of variables

such that a set of constraints is satisfied (Dechter, 2003). Such satisfying assignments are

the problem solutions. In soft CSPs the task is to find the best solution according to some

preferences expressed by means of cost functions (Bistarelli et al., 1999). Thus, CSPs and

soft CSPs are decision and optimization problems, respectively. Without loss of generality,

in the following we will assume optimization as minimization. Algorithms for CSPs and

soft CSPs can be divided into exact and approximate. Exact algorithms are normally based

on search (e.g. branch and bound, BB (Freuder and Wallace, 1992)) or dynamic program-

ming (e.g., bucket elimination, BE (Dechter, 1999)). Approximate algorithms can compute

E. Rollón . J. Larrosa (�)
Universitat Politecnica de Catalunya, Barcelona, Spain
e-mail: {erollon, larrosa}@lsi.upc.edu

Springer

308 J Heuristics (2006) 12: 307–328

upper bounds (e.g., metaheuristics (Bertrand and Trombettoni, 2003)) or lower bounds (e.g.

relaxation methods (de Givry, Verfaillie, and Schiex, 1997). Algorithms that compute lower

bounds (such as mini-bucket elimination, MBE (Dechter and Rish, 2003)) are a fundamental

component of branch and bound because they can be executed at every search node in order

to detect infeasible nodes (Meseguer et al., 2001).

Many real world problems involve multiple measures of performance, or objectives, which

should be optimized simultaneously. The simultaneous optimization of multiple, possibly

competing, objective functions deviates from single function optimization in that it seldom

admits a single, perfect solution. Instead, multiobjective constraint optimization problems

tend to be characterized by a family of alternatives which must be considered equivalent in

the absence of information concerning the relevance of each objective relative to the others.

Algorithms for multiobjective optimization can also be divided into exact and approximate.

During our bibliographic research (see (Ehrgott and Gandibleux, 2002)) we observed that

most work has been done in approximate algorithms to compute upper bounds. In particular,

evolutionary approaches seem to be the best option in practice. Very little is known about

approximate algorithms to compute lower bounds. Regarding exact algorithms, most work

focuses on specific techniques for specific problems such as the multiobjective version of:

knapsack problem, traveling salesman problem, shortest path problem, etc.

In this paper we consider generic algorithms for multiobjective optimization. In particular,

we introduce the extension to multiobjective optimization of bucket elimination (BE), a

well known algorithm based on dynamic programming. First, we define the multiobjective
weighted constraint satisfaction framework (MO-WCSP), where all the objective functions

are additive. Then, we extend BE from WCSP to MO-WCSP, producing MO-BE. Next,

we show that MO-BE can be used not only to solve MO-WCSP problems, but also to deal

with knapsack-like constraints. Moreover, we show that this approach provides the same

complexity improvement as our previous work (Larrosa and Rollon, 2004a, 2004b) while

avoiding the introduction of state-variables and other ad-hoc techniques.

We also show how mini-buckets (MBE), the approximation version of BE, can be extended

to multiobjective problems. The new algorithm MO-MBE produces a set of lower bounds of

the exact solutions. The relevance of this algorithm is two-fold: on the one hand it can be used

to bound the optimum of a problem when computing the exact solutions is too difficult. On

the other hand, it can be used in combination with branch and bound to enhance its pruning

power. The efficiency and accuracy of MO-MBE is empirically demonstrated in biobjective

and real scheduling problems.

The structure of this paper is as follows: Section 2 provides some preliminaries on mono-

objective optimization, Section 3 introduces multiobjective WCSPs, Section 4 introduces the

extension of BE to multiobjective optimization, Section 5 shows how some global constraints

in mono-objective optimization can be processed more efficiently as multiobjective, Section

6 introduces multiobjective mini-buckets, Section 7 reports some experimental results and,

finally Section 8 gives some conclusions and points out some directions of future work.

2. Preliminaries

Let X = (x1, . . . , xn) be an ordered set of variables and D = (D1, . . . , Dn) an ordered set

of domains. Domain Di is a finite set of potential values for xi . We call d the largest domain

size. The assignment (i.e, instantiation) of variable xi with a ∈ Di is noted (xi ← a). A tuple
is an ordered set of assignments to different variables (xi1

← ai1
, . . . , xik ← aik). The set

of variables (xi1
, . . . , xik) assigned by a tuple t , noted var (t), is called its scope. The size

Springer

J Heuristics (2006) 12: 307–328 309

of var (t) is the arity of t . When the scope is clear by the context, we omit the variables

and express the tuple as a sequence of domain values (ai1
. . . aik). We focus on two basic

operations over tuples: the projection of t over A ⊆ var (t), noted t[A], is a sub-tuple of t
containing only the instantiation of variables in A. Let t and s be two tuples having the same

instantiations to the common variables. Their join, noted t · s, is a new tuple which contains

the assignments of both t and s. Projecting a tuple t over the empty set t[∅] produces

the empty tuple λ. We say that a tuple t is a complete instantiation when var (t) = X .

Sometimes, when we want to emphasize that a tuple is a complete instantiation we will call

it X .

A constraint satisfaction problem (CSP) is a triplet P = (X ,D,R), where R is a set

of constraints defining the variables’ simultaneous legal value assignments. We say that a

tuple t satisfies a constraint R if var (R) ⊆ var (t) and t[var (R)] ∈ R. A solution of a CSP

is a complete instantiation X that satisfies all the constraints in R. In a CSP, the usual task

of interest is to find a solution or prove that there is none. Solving a CSP is in general

NP-complete.

Example 1. Consider a problem with four objects that we must either take or leave behind.

We can represent this by four variables (x1, x2, x3, x4) and two values per domain Di = {0, 1}
(1 and 0 mean take and discard, respectively). Suppose the existence of three constraints that

must be satisfied: x3 ∨ x4, x4 ∧ x2, and x1∨x3 (∨ means exclusive or). The problem is a CSP

with four solutions: 0010, 0011, 0110 and 1001.

Weighted CSP (WCSP) (Bistarelli et al., 1997; Schiex et al., 1995) are CSPs where the set of

constraints is replaced by a set of cost functions (F) which denote preferences among tuples.

A cost function f over S ⊆ X associates costs to tuples t such that var (t) = S. The set of

variables S is the scope of f and is noted var (f). Abusing notation, when var (f) ⊂ var (t),
f (t) will mean f (t[var (f)]). In the sequel, we assume costs to be natural numbers. The set

F defines the objective function,

F(X) =
∑
f ∈F

f (X)

A WCSP is a quadruple P = (X ,D,F, K), where X and D are variables and domains.

F is the set of cost functions. Value K bounds the maximum acceptable cost of solutions.

A WCSP solution is a complete assignment X such that F(X) < K . The task of interest

consists on finding a solution with minimum cost, if there is any. Observe that the existence

of K is assumed without loss of generality, since it can be set to an arbitrarily large value.

However, K can be used to tighten the notion of solution if we want to guarantee a certain

degree of quality. Its importance will become clear in Section 5.

Example 2. Consider the problem of Example 1. Suppose that taking object i brings a profit

pi = i . Besides, objects 2 and 3 are complementary, meaning that if both of them are taken

we get an additional profit p23 = 3. Making the most profitable selection of objects can be

expressed as a minimization WCSP, where the task is to minimize the profit of discarded

objects. Hard constraints are expressed as 0, ∞ functions,

h1(x1, x3) =
{

0, x1∨x3

∞, otherwise

Springer

310 J Heuristics (2006) 12: 307–328

h2(x3, x4) =
{

0, x3 ∨ x4

∞, otherwise

h3(x2, x4) =
{

0, x2 ∧ x4

∞, otherwise

Soft constraints encoded as unary and binary functions,

fi (xi) =
{

i, xi = 0

0, otherwise
f23(x2, x3) =

{
0, x2 ∧ x3

3, otherwise

The value of K can be trivially set to
∑4

i=1 fi (0) + f23(0, 0) = 13, without fear to miss any

solution. The optimal solution is 0110 with cost 5. Observe that, if we set K = 5, the problem

has no solution.

A WCSP can be represented by its constraint graph G = (V, E) (also called interaction
graph), which contains one node per variable and one arc connecting any pair of nodes whose

variables are included in the scope of some function. Let o be an ordering of V . The width of

node i subject to o, noted w(o, i) is the number of adjacents to i which are before i in o. The

width of G subject to o, noted w(o), is the maximum width among the nodes. The induced
graph G∗(o) is computed as follows: nodes are processed in reverse order, according to o.

When processing node i , edges are added as needed in order to make a clique with all its

adjacent which are still unprocessed. The width of the induced graph is called the induced
width and is noted w∗(o) (Dechter, 2003).

2.1. Bucket elimination

Bucket elimination (BE) (Dechter, 1999; Bertele and Brioschi, 1972) is a generic algorithm

that can be used for WCSP solving. It uses two operations over functions:� The sum of two functions f and g denoted (f + g) is a new function with scope var (f) ∪
var (g) which returns for each tuple the sum of costs of f and g,

(f + g)(t) = f (t) + g(t)� The elimination of variable xi from f , denoted f ↓ xi , is a new function with scope

var (f) − {xi } which returns for each tuple t the minimum cost extension of t to xi ,

(f ↓ xi)(t) = min
a∈Di

{ f (t · (xi ← a))}

where t · (xi ← a) means the extension of t to the assignment of a to xi . Observe that when

f is a unary function (i.e., arity one), eliminating the only variable in its scope produces a

constant.

Unfortunately, in general, the result of summing functions or eliminating variables cannot

be expressed intensionally by algebraic-expressions. Therefore, we assume functions to be

extensionally stored in tables. Thus, the space complexity of storing function f is O(d |var (f)|).
BE (Figure 1) uses an arbitrary variable ordering o that we assume, without loss of

generality, lexicographical (i.e, o = (x1, x2, . . . , xn)). BE works in two phases. In the first

Springer

J Heuristics (2006) 12: 307–328 311

Fig. 1 Bucket Elimination.
Given a WCSP (X , D, F, K), the
algorithm returns a constant
function g1 (i.e, var (g1) = ∅)
with the optimal cost, along with
one optimal assignment t . If there
is no solution, the algorithm
returns NIL

phase (lines 1–6), the algorithm eliminates variables one by one, from last to first, according

to o. The elimination of variable xi is done as follows: F is the set of current functions. The

algorithm computes the so called bucket of xi , noted Bi , which contains all cost functions in

F having xi in their scope (line 2). Next, BE computes a new function gi by summing all

functions in Bi and subsequently eliminating xi (line 3). Then, F is updated by removing

the functions in Bi and adding gi (line 5). The new F does not contain xi (all functions

mentioning xi were removed) but preserves the value of the optimal cost. The elimination of

the last variable produces an empty-scope function (i.e., a constant) which is the optimal cost

of the problem. The second phase (lines 7–11) generates an optimal assignment of variables.

It uses the set of buckets that were computed in the first phase. Starting from an empty

assignment t (line 7), variables are assigned from first to last according to o. The optimal

value for xi is the best value regarding the extension of t with respect to the sum of functions

in Bi (lines 9,10). We use argmin to denote the argument producing the minimum valuation.

The gi -subproblem is the subproblem formed by all the original cost functions involved in

the computation of gi . Let t be an assignment of variables x1, . . . , xi−1. The correctness of

BE is a direct consequence of the fact that when processing bucket Bi , gi (t[var (gi)]) is the

cost of the best extension of t to variables xi , xi+1, . . . , xn in the gi -subproblem.

Theorem 1. (Dechter, 1999) The complexity of BE along ordering o is time O(e × dw∗(o)+1)

and space O(n × dw∗(o)), where e is the number of functions, d is the largest domain size, n
is the number of variables and w∗(o) is the induced width under the corresponding variable
ordering.

2.2. A non-standard implementation of bucket elimination

In this subsection we provide a non-standard implementation of the second phase of the BE

algorithm (Figure 1, lines 7–11). Although it may look unnecessarily complex for BE, it

will facilitate the comprehension of the new algorithm MO-BE introduced in Section 4. The

idea is to retrieve the optimal solution by keeping track of the optimal cost of the different

subproblems contained in each bucket.

Let Bi = { fi1
, . . . , fimi

} be the set of cost functions of bucket Bi . Each cost function fik

is either an original function or the result of processing a higher bucket B j (i.e., fik = g j).

We define db(fik) as the departure bucket for function fik , that is, the bucket where the

Springer

312 J Heuristics (2006) 12: 307–328

Fig. 2 Second phase of the
bucket elimination with a
non-standard implementation

function was generated. Therefore, db(fik) = i if fik is an original function, and db(fik) = j
if fik = g j .

As in standard BE, the new second phase of the algorithm (Figure 2) generates in t an

optimal assignment of variables, considering them one at the time, from first to last. We use

an array C[1 . . . n]. Each C[i] will store the cost contribution of gi to the solution (namely,

the optimal contribution of the gi -subproblem). Initially, t is an empty assignment λ (line 7).

Clearly, C[1] is set to g1 (line 8). The optimal value for x1 is any domain value b ∈ D1 such

that C[1] = ∑mi
k=1 f1k (t · (x1 ← b)). In line 11 one such value is selected and in line 12 added

to t . The contribution of each function f1k ∈ B1 to the cost C[1] is f1k (t · (x1 ← b). Therefore,

each contribution f1k (t · (x1 ← b) is propagated to the C entry of the corresponding departure

bucket C[db(f1k)] (lines 13 and 14). The same procedure is repeated for each variable xi in

increasing order.

2.3. Mini-bucket elimination

Mini-Bucket Elimination (MBE) (Dechter and Rish, 2003) is an approximation designed to

avoid the space and time problem of full bucket elimination by partitioning large buckets into

smaller subsets called mini-buckets which are processed independently. Consider a bucket

Bi . The mini-bucket algorithm creates a partition Q′ = {Q1, . . . , Qm} of the functions in

Bi . The approximation processes each subset separately, thus computing a set of functions

{gil}m
l=1,

gil =
(∑

f ∈Ql

f

)
↓ xi

Bucket elimination, on the other hand, would compute the function gi ,

gi =
(∑

f ∈Bi

f

)
↓ xi

Since,

gi︷ ︸︸ ︷(∑
f ∈Bi

f

)
↓ xi ≥

m∑
l=1

gil︷ ︸︸ ︷(∑
f ∈Ql

f

)
↓ xi

Springer

J Heuristics (2006) 12: 307–328 313

the bound computed in each bucket yields a lower bound on the cost of the solution. The

quality of the bound depends on the partitioning procedure. Given a bounding parameter k, the

algorithm creates a k-partition, where each mini-bucket includes no more than k variables. In

general, greater values of k increment the number of functions included in each mini-bucket.

Therefore, the bound will be presumably closer to the cost of the optimal solution.

Theorem 2. (Dechter and Rish, 2003) The complexity of MBE(k) is time O(e × dk) and
space O(e × dk−1), where e is the number of functions.

3. Multiobjective weighted constraint satisfaction problem

A multiobjective WCSP (MO-WCSP) is defined as (X ,D, 〈Fi , Ki 〉p
i=1), where X =

{x1, . . . , xn} and D = {D1, . . . , Dn} are variables and domains. Each Fi is a set of cost

functions defining an objective function Fi (X) = ∑
f ∈Fi

f (X). Value Ki bounds the maxi-

mum acceptable cost for the objective function Fi . There is a vector-valued objective function

F(X) = (F1(X), . . . , Fp(X)). Given a complete assignment X , we say that F(X) is consis-
tent iff ∀i, Fi (X) < Ki . A solution is a complete assignment X such that F(X) is consis-

tent. Given two solutions X and X ′ such that F(X) �= F(X ′), we say that X is better than

X ′ (F(X) < F(X ′)) if ∀i, F(X) ≤ F(X ′). If F(X) < F(X ′), we say that F(X) dominates
F(X ′). A solution X is efficient or Pareto optimal if there is no better solution. Let XE be the

set of efficient solutions, and EF be their set of non-dominated costs, also called the efficient
frontier. The task in a MO-WCSP is to compute EF (and, possibly, one or all efficient so-

lutions for each of its elements). Observe that |EF | = O(
∏p−1

i=1 Ki). However, XE can be as

large as O(dn), when every assignment is efficient. Clearly, when there is only one objective

function (i.e., p = 1), MO-WCSP is equivalent to WCSP, and |EF | = O(1). As in the WCSP

case, each MO-WCSP instance has an associated constraint graph G computed in the same

way. Note that the constraint graph G contains arcs coming from all the individual objective

functions.

Example 3. Consider that we add a weight wi = 5 − i and a volume vi = i to every object

in our running example. We would like to select valuable objects but, in addition, we do not

want to carry a heavy and big container. The original objective function (profit of discarded

objects) is now called F1. We need to define new cost functions F2 and F3 for weight and

volume. The new problem has three solutions: 0010, 0110, and 0011, with non-dominated

costs (10, 2, 3), (5, 5, 5), and (6, 3, 7), respectively.

If objects must be carried in a container with weight and volume bounded by K2 = 5 and

K3 = 6, respectively, the problem has only one solution 0010 with cost (10, 2, 3).

4. Bucket elimination for MO-WCSP

In this Section we extend BE to the MO-WCSP model. The first step is to extend cost functions

to the new multiobjective nature. A multi-cost function f with scope var (f) ⊆ X associates

to each tuple t invar (f) a set of non-dominated points in the space of consistent multiobjective
costs. Thus, f (t) = {v1, . . . , vr }, with vi = (vi1, . . . , vi p), such that ∀ i, j, vi j < K j and

∀ i, j, vi �< v j . Observe that | f (t)| = O(
∏p−1

i=1 Ki) and | f | = O(
∏p−1

i=1 Ki × d |var (f)|).
The new algorithm will deal with multi-cost functions. Roughly, the elimination of variable

xi from a multi-cost function will produce a new multi-cost function gi such that gi (t) will

Springer

314 J Heuristics (2006) 12: 307–328

contain all the efficient extension of t to the eliminated variables xi , xi + 1, . . . , xn , with respect

the gi -subproblem. In the following, v + v ′ will be the usual component-by-component sum.

Operations over multi-cost functions are extended as follows:� Let f and g be two multi cost functions. Their sum h = f + g is defined as,

h(t) = {v| t = t ′ · t ′′, v = v ′ + v ′′, v ′ ∈ f (t ′), v ′′ ∈ g(t ′′),

consistent(v), nondominated(v)}

f + g can be trivially computed in time O(
∏p−1

i=1 K 2
i × d |var (f)∪var (g)|).� Let f be a multi-cost function. The elimination of xi , h = f ↓ xi is defined as,

h(t) = {v| v ∈ f (t · (xi ← a)), nondominated(v)}

h = f ↓ xi can be computed in O(
∏p−1

i=1 Ki × d |var (f)|).

Observe that in the p = 1 case, these definitions reduce to the classical ones.

Figure 3 shows MO-BE, the generalization of BE to MO-WCSP. Its structure is similar to

standard BE. In the following, we discuss the main differences. MO-BE receives a MO-WCSP

Fig. 3 Description of MO-BE. The input is a MO-WCSP instance (X ,D, 〈Fi , Ki 〉p
i=1). The output is g1, a

zero-arity multi-cost function which contains the efficient frontier and, for each element v j ∈ g1, an efficient
solution t j . If there is no solution, the algorithm returns NIL

Springer

J Heuristics (2006) 12: 307–328 315

instance (X ,D, 〈Fi , Ki 〉p
i=1). First of all, each cost function f ∈ Fi is transformed into

a multi-cost function h (lines 1–8). In the new function, each h(t) contains a singleton

representing the same information as f (t) but extended to the new vectorial context. This

is trivially done as follows: if f (t) = v, then h(t) = {(v1, v2, . . . , vp)}, where vi = v and

v j = 0, ∀ j �= i . The new multi-cost functions are stored in the set F .

The first phase of the algorithm (lines 9-14) computes the efficient frontier EF . It works

as BE, the only difference being that multi cost functions are used instead of standard

cost functions. Let v = (v1, . . . , vp) be an element of the multi cost relation gi (t) com-

puted during the elimination of xi (i.e, v ∈ gi (t)). By construction, tuple t can be consis-

tently extended to the eliminated variables xi , xi+1, . . . , xn with cost vi for each objective

function Fi . Besides, such extension is non-dominated. After the first phase, g1 contains

a set of points in the space of solutions, which is exactly the efficient frontier EF of the

problem.

Let g1 contain r vector points {v1, v2, . . . , vr }. The second phase (lines 16-27) com-

putes one efficient solution t j for every element v j ∈ g1. The idea is the same as in

the non-standard implementation given in section 2.2, that is, to retrieve the efficient so-

lution keeping track of the cost contribution of each gi to the solution. In this case,

the array C[i] will store a non-dominated multi cost attainable from gi . Initially, t j = λ

and C[1] = v j is the vector point for which the efficient solution is searched. For each

j , variables are considered in increasing order x1, . . . , xn (line 19). The optimal do-

main value a ∈ D1 for x1 is any one such that C[1] ∈ ∑m1

k=1 f1k (t · (x1 ← a)). Since each

f1k (t · (x1 ← a)) contains a set of non-dominated vectors, there must exist at least one

combination of cost vectors (v1, . . . , vm1) where each vk ∈ f1k (t · (x1 ← a)), such that

C[1] = ∑m1

k=1 vk. Let Sa be the set of such combinations for domain value a (line 21).

Tuple t j is extended to variable x1 with a domain value b for which exists at least one

combination (line 22–23). One arbitrary combination (v1, . . . , vm1) ∈ Sb is selected in

line 24. The contribution to the solution of each f1k ∈ B1 is vk. Therefore, it is possi-

ble to update the array C of each departure bucket (line 25). The same procedure is re-

peated for each variable. At the end of the process, t j is an efficient solution with cost

vector v j .

Example 4. Consider the problem instance of example 3 where the weight and volume are

not bounded. The weight and volume cost functions are, respectively:

wi (xi) =
{

5 − i xi = 1

0 xi = 0
vi (xi) =

{
i xi = 1

0 xi = 0

The objective functions to be minimized are,

F1 = h1 + h2 + h3 + ∑
xi ∈X fi + f23

F2 = ∑
xi ∈X wi

F3 = ∑
xi ∈X pi

The trace of the algorithm under lexicographical ordering is:

Springer

316 J Heuristics (2006) 12: 307–328� Input: the algorithm receives the seven trivially extended multi cost functions

h1(x1, x3) =
{

(0, 0, 0) x1∨x3

(∞, 0, 0) otherwise
fi (xi) =

{
(0, 0, 0) xi = 1

(i, 0, 0) xi = 0

h2(x3, x4) =
{

(0, 0, 0) x3 ∨ x4

(∞, 0, 0) otherwise
f23(x2, x3) =

{
(0, 0, 0) x2 ∧ x3

(3, 0, 0) otherwise

h3(x2, x4) =
{

(0, 0, 0) x2 ∧ x4

(∞, 0, 0) otherwise
wi (xi) =

{
(0, 5 − i, 0) xi = 1

(0, 0, 0) xi = 0

vi (xi) =
{

(0, 0, i) xi = 1

(0, 0, 0) xi = 0� Elimination of x4: B4 = {h2, h3, f4, w4, v4}. Their sum is b4(x2, x3, x4),

b4(001) = {(0, 1, 4)} b4(010) = {(4, 0, 0)}
b4(011) = {(0, 1, 4)} b4(110) = {(4, 0, 0)}

Note that b4(000) = b4(100) = b4(101) = b4(111) = {} because the sum of the multi cost

functions in B4 for those tuples evaluates to (∞, 0, 0), (∞, 0, 0), (∞, 1, 4), (∞, 1, 4),

respectively, and none of those cost vectors are consistent. In the sequel, we only indicate

consistent evaluations.

Projecting x4 out of b4 produces g4(x2, x3),

g4(00) = {(0, 1, 4)} g4(01) = {(4, 0, 0), (0, 1, 4)} g4(11) = {(4, 0, 0)}� Elimination of x3: B3 = {g4, h1, f3, f23, w3, v3}. Their sum is b3(x1, x2, x3),

b3(001) = {(7, 2, 3), (3, 3, 7)} b3(011) = {(4, 2, 3)} b3(100) = {(6, 1, 4)}

Projecting x3 out of b3 produces g3(x1, x2),

g3(00) = {(7, 2, 3), (3, 3, 7)} g3(01) = {(4, 2, 3)} g3(10) = {(6, 1, 4)}� Elimination of x2: B2 = {g3, f2, w2, v2}. Their sum is b2(x1, x2),

b2(00) = {(9, 2, 3), (5, 3, 7)} b2(01) = {(4, 5, 5)} b2(10) = {(8, 1, 4)}

Projecting x2 out of b2 produces g2(x1),

g2(0) = {(9, 2, 3), (5, 3, 7), (4, 5, 5)} g2(1) = {(8, 1, 4)}� Elimination of x1: B1 = {g2, f1, w1, v1}. Their sum is b1(x1),

b1(0) = {(10, 2, 3), (6, 3, 7), (5, 5, 5)} b1(1) = {(8, 5, 5)}

Projecting x1 out of b1 produces g1 = {(10, 2, 3), (6, 3, 7), (5, 5, 5)}
Springer

J Heuristics (2006) 12: 307–328 317

Note that (8, 5, 5) is not a valid cost vector as it is dominated by (5, 5, 5).

Therefore, the problem has three Pareto optimal solutions. We show how to retrieve the

one with costs (10, 2, 3):� Initially, t = λ, and C[1] = (10, 2, 3).� Variable x1 assignment: there are two values for x1,

t = (x1 ← 0), S0 = {((9, 2, 3), (1, 0, 0), (0, 0, 0), (0, 0, 0))}
t = (x1 ← 1), S1 = {}

Only value 0 satisfies the sum of multi cost functions in B1 because S0 is not empty.

Therefore, t is updated to (x1 ← 0) and the cost contribution of the departure bucket of every

non original multi cost function in B1 is updated with its corresponding v j ∈ (v1, . . . , v4).

In this case, there is only one non original function, g2. Therefore, C[db(g2)] = C[2] =
(9, 2, 3).� Variable x2 assignment: there are two values for x2,

t = (x1 ← 0, x2 ← 0), S0 = {((7, 2, 3), (2, 0, 0), (0, 0, 0), (0, 0, 0))}
t = (x1 ← 0, x2 ← 1), S1 = {}

Only value 0 satisfies the sum of multi cost functions in B2 because S0 is not empty.

Therefore, t is updated to (x1 ← 0, x2 ← 0) and C[db(g3)] = C[3] = (7, 2, 3).� Variable x3 assignment: there are two values for x3,

t = (x1 ← 0, x2 ← 0, x3 ← 0), S0 = {}
t = (x1 ← 0, x2 ← 0, x3 ← 1), S1 = {((4, 0, 0), (0, 0, 0), (0, 0, 0),

(3, 0, 0), (0, 2, 0), (0, 0, 3))}

Only value 1 satisfies the sum of multi cost functions in B3 as S1 is not empty. Therefore,

t is updated to (x1 ← 0, x2 ← 0, x3 ← 1) and C[db(g4)] = C[4] = (4, 0, 0).� Variable x4 assignment: there are two values for x4,

t = (x1 ← 0, x2 ← 0, x3 ← 1, x4 ← 0), S0 = {((0, 0, 0), (0, 0, 0), (4, 0, 0),

(0, 0, 0), (0, 0, 0))}
t = (x1 ← 0, x2 ← 0, x3 ← 1, x4 ← 1), S1 = {}

Only value 0 satisfies the sum of multi cost functions in B4 because S0 is not empty.

Therefore, t is updated to (x1 ← 0, x2 ← 0, x3 ← 1, x4 ← 0). As there is no original

function, the cost contribution vector C is not updated.

As a result, the Pareto optimal solution with objective vector (10, 2, 3) is (x1 ← 0,

x2 ← 0, x3 ← 1, x4 ← 0).

Theorem 3. MO-BE is space O(n × ∏p−1
i=1 Ki × dw∗

) and time O(e × ∏p−1
i=1 K 2

i × dw∗+1),
where n is the number of variables, e is the number of cost functions, w∗ is the graph induced
width, Ki is the bound of each objective function, p is the number of objective functions, and
d is the largest domain size.

Proof: Let f be an arbitrary multi-cost function of arity r . Observe that its space complexity

is O(
∏p−1

i=1 Ki × dr) because: there are O(dr) different instantiations of the problem variables

Springer

318 J Heuristics (2006) 12: 307–328

and, for each instantiation, there may be up to O(
∏p−1

i=1 Ki) undominated instantiations. Since

the largest arity among the functions that MO-BE needs to store is bounded by O(w∗) and

there are n such functions, the space and time complexities clearly hold. �

Observe that K p does not appear in the complexity of MO-BE. Since the order of the

different objective functions is arbitrary, a straightforward optimization consists on leaving

the largest Ki for the last position.

Property 1. In a problem with a single objective function (i.e., p = 1), the algorithm MO-BE
is equivalent to BE.

5. Application of MO-BE to WCSP with global constraints

It has been recently observed that there are some constraints (typically called global) that

appear very frequently in constraint problems. The arity of these constraints is usually large

and not to take into account their semantics during the solving process yields inefficient

algorithms. A well known example is the enforcement of arc-consistency in the all-diff con-

straint: if arc-consistency is enforced with a generic algorithm the complexity is exponential

on its arity, but there is a specialized algorithm that achieves the same result in quadratic time

(Regin, 1994).

A similar situation has been detected when dealing with some constraints in the con-

text of BE. Large arity constraints produce large cliques in the constraint graph which, in

turn, imply a large induced width. Consequently, the space and time complexity of BE be-

comes prohibitive. In our previous work (Larrosa and Rollon, 2004b, 2004a), we solved

this problem for one important global constraint called knapsack. The idea was to make

BE deal explicitly with knapsack constraints, exploiting their semantics. The new algo-

rithm introduced so-called state variables to record useful information during the elimi-

nation of the variables. The benefit of such approach was that the constraint graph does

not have to take into account the knapsack constraints. Therefore, they do not contribute

by means of their (presumably large) scope, but only by their number. As a result, ex-

ponentially expensive problems with classical BE may become polynomial with the new

algorithm.

In this Section we show that we can obtain exactly the same results with MO-BE. The

idea is to reformulate global constraints as objective functions. We illustrate how to do it

with knapsack constraints, global cardinality constraints and all-diff constraint.

Knapsack constraints (a.k.a. capacity constraints) arise in problems where some variables

represent the potential uses of shared resources (Trick, 2003; Sellmann, 2003). A knapsack
constraint Ci = (ri , Ki) with scope var (Ci) ⊆ X bounds the use of a resource i . It is de-

fined by a set of resource consumption functions ri = {ri j |x j ∈ var (Ci)} and the resource

availability Ki . Let a be a domain value of x j ∈ var (Ci), then ri j (a) is the number of units

of the resource i that a consumes when assigned to x j . An assignment t of all variables in

var (Ci) satisfies the constraint if
∑

(x j ←a)∈t ri j (a) < Ki .

Consider a WCSPP = (X ,D,F = F1 ∪ F2, K) where the set of cost functions is formed

by general cost functions F1 and knapsack constraints F2 = {C1, . . . , Ce}. We can reformu-

late the problem into an equivalent MO-WCSP P ′ = (X ,D, 〈F1, K 〉 ∪ 〈ri , Ki 〉e
i=1). There

is one objective function for each knapsack constraint Ci indicating that the consumption of

resource i must be minimized and it is not acceptable to take more than Ki units. Besides,

Springer

J Heuristics (2006) 12: 307–328 319

the set of general constraints in F1 define an additional objective function Fe+1 subject to

upper bound K . Once the efficient frontier EF of P ′ is computed, all vector components

associated to knapsack constraints must be removed from every v ∈ EF leaving in EF a set

of scalar values. Its minimum is the problem optimal solution.

The constraint graph of P will include the knapsack constraints. Thus, solving P with

BE will be exponential in the induced width w∗ where knapsack constraints are included

in the constraint graph. On the other hand, the constraint graph of P ′ will not be affected

by the knapsack constraints because their corresponding objective functions have unary

cost functions only, which do not add arcs to the graph. Let w′∗ denote the correspond-

ing induced width. Solving P ′ with MO-BE will be time O(
∏e

i=1 Ki
2 × dw∗+1) and space

O(
∏e

i=1 Ki × dw∗+1), where e is the number of capacity constraints, and d the largest domain

size.

A global cardinality constraint (gcc) bounds the number of times values can be assigned

to variables. This type of constraint commonly occurs in rostering, timetabling, sequencing,

and scheduling applications (Quimper et al., 2004).

For simplicity, we consider only one gcc over the whole set of variables X =
{x1, . . . , xn} restricting values {a1, . . . , ap}. Let lb j and ub j denote the bounds on the

number of occurrences of value a j . As already suggested in (van Hentenryck et al.,

1992), the gcc can be modeled with 2p-knapsack constraints. The first p knapsack con-

straints are C j = {r j , ub j } where ∀k ≤ n, r jk(a) equals 1 when a = a j , and 0 other-

wise. They enforce the upper bounds, that is, the number of assignments of value a j .

The last p knapsack constraints are C ′
j = (r ′

j , n − lb j), where ∀k ≤ n, r ′
jk(a) equals

0 when a = a j , and 1 otherwise. They enforce the lower bounds, by reformulating

them as upper bounds, that is, the number of assignments of values different from

a j .

Under this formulation, we can solve the problem using the same approach as for knap-

sack constraints. However, MO-BE becomes more efficient than its worst-case complexity

because in this particular case each knapsack constraint C j is related to another constraint

C ′
j by the fact that r jk(a) = 1 − r ′

jk(a). Then, function gi , computed for each bucket i , sat-

isfies that: if (v1, . . . , vp, v
′
1, . . . , v

′
p, . . .) ∈ gi (t), then ∀ j=1..pv

′
j = n − i − v j . As a conse-

quence, the size of each multi-cost function entry is gi (t) = O(
∏p

j=1 min{ub j , n − lb j }).
The resulting complexity of MO-BE when solving a WCSP with one gcc is time

O(
∏p

j=1 min{ub j , n − lb j }2 × dw∗+1) and space O(
∏p

j=1 min{ub j , n − lb j } × dw∗
).

A clear consequence of the previous complexity indicates that MO-BE is a suitable

algorithm for WCSPs with one gcc, when the gcc restrict the number of occurrences of

a small number of domain values, even if the restriction applies to a large number of

variables.

An all-different constraint (all-diff) (Regin, 1994) is a well-known specialization of a

gcc where n variables must take different values among n candidates. In this case, lb j = 0

and ub j = 1 for every domain value a j . For simplicity, we consider a WCSP with only one

all-diff constraint among all the variables. Following the ideas for the previous two global

constraints, it can be reformulated as a MO-WCSP.

As the number of bounded domain values is n, the algorithm MO-BE is time O(22n ×
dw∗+1), which makes it worse than search. This result is hardly a surprise since it is well known

that the traveling salesman problem is not suitable for dynamic programming techniques due

to its implicit all-diff constraint that cannot be processed efficiently (Brassard and Bratley,

1995).

Springer

320 J Heuristics (2006) 12: 307–328

The approach presented along this Section has a potential source of inefficiency: an

objective function still contributes to the algorithm space and time complexity even when

its scope is totally processed. This problem can be overcome using the same idea described

in (Larrosa and Rollon, 2004a). Namely, objective functions can be deactivated as soon as

their scope is completely processed.

6. Mini-buckets with multi-objective WCSP

The concept of lower bound in mono-objective optimization can be extended to multi-

objective optimization (Ehrgott and Gandibleux, 2001). L is a lower bound set of R if,

1. ∀v ∈ R, ∃v ′ ∈ L such that either v = v′ or v′ ≤ v.

2. ∀v ∈ R, ∀v ′ ∈ L , v �< v ′.

The idea of mini-buckets (MBE) can be adapted to the multiobjective situation in order

to generate lower bound sets. The only difference between MBE and the new algorithm

MO-MBE is that cost functions are replaced by multi cost functions. In MO-MBE large arity

buckets are also split into subsets with a bounded arity. Each subset is processed separately,

with bounded time and space complexity.

Theorem 4. Executing MO-MBE with a MO-WCSP instance produces a lower bound set L
of its efficient frontier EF .

Proof: Consider bucket Bi . MO-MBE creates a partition Q′ = {Q1, . . . , Qm} of the bucket,

where the join scope of each subset Ql contains a bounded number of variables. MO-MBE

processes each mini-bucket separately, thus computing a set of multi-cost functions gil �

gil =
(∑

f ∈Qil

f

)
↓ xi

MO-BE, on the other hand, would compute the multi cost function gi ,

gi =
(∑

f ∈Bi

f

)
↓ xi

First we show that
∑

j=1...m gi j is a lower bound set of gi . Let v ∈ gi (t) and v ′ ∈∑
j=1...m gi j (t):

1. By definition of the projection of multi cost functions, there exists a

domain value a ∈ Di such that v ∈ ∑
f ∈Bi

f (t · (xi ← a)). Therefore, v ∈∑
l=1...m

∑
f ∈Qil

f (t · (xi ← a)). As in each mini-bucket the value assigned to xi should

be different, either v or a vector v ′ that dominates v is an element of
∑

l=1...m gil (t). As

a result, the first condition for a lower bound set follows.

2. Let v ∈ gi (t). For the first property, either v or a vector v ′ that dominates v is an

element of
∑

l=1...m gil (t). By definition, the sum of multi cost functions contains non-

dominated vectors. As a result, if v ∈ ∑
l=1...m gil (t), there is no v ′ ∈ ∑

l=1...m gil (t)

Springer

J Heuristics (2006) 12: 307–328 321

such that v dominates v ′. If v /∈ ∑
l=1...m gil (t), there is a v ′ ∈ ∑

l=1...m gil (t) such that

v ′ dominates v . Therefore, there is no vector in
∑

l=1...m gil (t) dominated by any other

vector in gi (t) and the second condition for a lower bound set also holds.

It is easy to see that the lower bound definition satisfies transitivity. Since MO-MBE pro-

cesses buckets where all functions are either original or recursively processed by MO-MBE

(which are lower bounds themselves), all functions computed by MO-MBE in a bucket are

lower bound sets of the function that MO-BE would compute at that bucket.

Theorem 5. MO-MBE, with accuracy parameter k is space O(e × ∏p−1
i=1 Ki × dk−1) and

time O(e × ∏p−1
i=1 K 2

i × dk), where e is the number of cost functions, Ki is the bound of each
objective function, p is the number of objective functions, and d is the largest domain size.

7. Computational experiments

7.1. Biobjective iterative deepening

One way to solve multi-objective problems with mono-objective technology is to extend

iterative deepening (Korf, 1985). The idea is to bound the different objective functions ex-

cept one and iteratively increase the bounds. For instance, if we have a mono-objective

optimization algorithm and a biobjective problem, we can use iterative deepening on one of

the objectives and, for each bound, optimize the other. This algorithm, that we call BID, is

depicted in Figure 4. It computes the efficient frontier sequentially. In our experiments we

used Solver 6.1 to solve the mono-objective problem of line 5 with default heuristics for

variable selection.

If the multi-objective problem is too difficult for the previous approach, we can use iterative

deepening on every objective function. If the available time is exhausted, we have a lower

bound of the efficient frontier. This algorithm, that we call BID-lb, is depicted in Figure 5.

It computes an increasingly large lower bound. As before, we used Solver 6.1 to solve the

decision problem of line 10 with default heuristics for variable selection.

We use BID and BID-lb as algorithms of reference to evaluate the performance of MO-BE

and MO-MBE, respectively.

Fig. 4 Biobjective iterative deepening (BID). Given a MO-WCSP (X , D, 〈Fi , Ki 〉2
i=1), the algorithm returns

the efficient frontier EF . The function non-dominated (EF) eliminates the dominated pairs from its input
parameter EF . Note that if the task in line 5 returns N I L , k2 is its solution and (k1, k2) is dominated by one
point already included in EF

Springer

322 J Heuristics (2006) 12: 307–328

Fig. 5 Biobjective iterative search lower bound (BID-lb). Given a MO-WCSP (X , D, 〈Fi , Ki 〉2
i=1), the al-

gorithm returns a lower bound set. Note that if LB= ∅, EF is the complete efficient frontier of the problem.
Moreover, if LB �= ∅ and EF �= ∅, EF contains a part of the efficient frontier and LB is a lower bound set of
the efficient frontier not contained in EF

7.2. Benchmark description

7.2.1. Max-SAT-ONE

Let F be a boolean formula in conjunctive normal form. Max-SAT is the problem of finding

a truth assignment such that the number of satisfied clauses in F is maximized. Max-ONE is

the problem of finding a model for F with a maximum number of variables assigned to true.

We define the Max-SAT-ONE problem as the problem of maximizing both the number of

satisfied clauses and variables assigned to true. We experiment with the well-known dimacs

SAT instances (Johnson and Trick, 1996). With current SAT solvers, these instances are

solved almost instantly for the SAT problem. However, we will show that they remain quite

challenging for the Max-SAT-ONE problem.

7.2.2. Biobjective vertex cover

Given a graph G = (V, E), a vertex cover is a subset of vertices S ⊆ V such that ∀(u, v) ∈ E ,

either u ∈ S or v ∈ S. The minimum vertex cover is a vertex cover of minimum size. In the

weighted version every vertex u has an associated weight w(u) and the weighted minimum
vertex cover is a vertex cover S with minimum F(S) = ∑

u∈S w(u). In the biobjective version

each vertex u has two weights w1(u) and w2(u) and the task is to minimize the two associated

objective functions. In our experiments we generated random graph instances with parameters

(N , E , C) where N is the number of vertices, E is the number of edges and C is the maximum

weight. Instances are generated by randomly selecting E edges. For each vertex, two costs

are randomly generated from the interval [0 . . . C].

Springer

J Heuristics (2006) 12: 307–328 323

7.2.3. Earth observation satellite scheduling

An earth observation satellite orbits the earth while taking photographs requested by different

customers. Typically, it is impossible to fulfil all the requests. Thus, given a set of candidate

photographs, the problem is to select the best subset that the satellite will actually take.

The selected subset of photographs must satisfy a large number of imperative constraints

and at the same time maximize the importance of selected photographs. Therefore, this is a

mono-objective optimization problem. We experiment with instances from the Spot5 satellite

(Bensana et al., 1999). When translated into the WCSP framework, these instances have

unary, binary and ternary cost functions, and domains of size 2 and 4. We experiment with

instances that include an additional capacity constraint imposed by the on-board storage limit.

The scope of the capacity constraint is the whole set of variables. Therefore, the associated

constraint graph is a clique and the induced width is the number of variables minus one.

Clearly, mono-objective BE is an infeasible solving technique.

7.3. MO-BE for biobjective problems

In our first experiment we analyze the suitability of MO-BE in biobjective problems. To that

end, we test MO-BE on the first and second benchmark (i.e., Max-SAT-ONE and biobjective

minimum vertex cover). In Section 4, we showed that the applicability of MO-BE depends

on the problem induced width. Therefore, we selected instances with induced width that

we could handle with our computer (Pentium IV at 3GHz with 2 Gb of memory, running

Linux). Variable orderings with small induced width were found with the min-degree heuristic

(Dechter, 2003). Regarding Max-SAT-ONE, we found 35 dimacs instances with induced

width below 24 which was our limit. Figure 6 compares the performance of MO-BE versus

BID. The first, second and third columns contain the instances names, number of variables

and number of clauses, respectively. The fourth column contains the induced width of each

instance. The fifth column contains the efficient frontier size. The last two columns indicate

the cpu time in seconds required by MO-BE and BID. A “-” indicates that the algorithm

does not terminate in 30 minutes. It can be observed that, in accordance with the complexity

analysis, the performance of MO-BE grows exponentially with the induced width. All the

instances with small induced width (dubois and pret) are solved instantly. The aim instances,

which have larger induced width, are still solved in less than half an hour. This experiment

confirms once more that with current computers, it is the space and not the time what limits

the applicability of decomposition methods. The BID presents a very bad performance in

the dubois, pret and ssa instances, which indicates that this algorithm does not exploit the

structure of the instances. BID can solve 7 out of the 10 aim instances, but it is generally

slower than MO-BE. Only in instance aim-50-2-0-no-4 BID outperforms MO-BE.

For biobjective weighted minimum vertex cover, we generated samples of size 20 of the

four classes of problems: (60, 95, 4), (70, 95, 4), (80, 95, 4) and (90, 95, 4). Figure 7 com-

pares the performance of MO-BE versus BID. The first, second and third column indicate

the problem class, the mean induced width and the mean size of the efficient frontier, respec-

tively. The fourth and fifth columns report the mean cpu time required by MO-BE and BID.

Observe that this instances have small induced width. Therefore MO-BE can solve them in

a few seconds. However, BID can only solve the smaller class and requires two orders of

magnitude more time than MO-BE.

Springer

324 J Heuristics (2006) 12: 307–328

Fig. 6 Experimental results on Max-SAT-ONE problems. Each problem is solved with MO-BE and BID.
Time limit 30 mins

Fig. 7 Experimental results on
biobjective weighted minimum
vertex cover problems. Parameter
C is set to 4. Mean values on 20
instances for each parameter
configuration. Time limit 30 mins

7.4. MO-MBE for biobjective problems

In our second experiment we evaluate the trade-off between accuracy and efficiency of

MO-MBE. For that goal, we compare MO-MBE and BID-lb on two domains: Max-SAT-ONE

and biobjective weighted minimum vertex cover in problems that cannot be solved exactly

with MO-BE.

Observe that the efficient frontier defines a region in the 2 dimensional space. One usual

way to evaluate the accuracy of lower bound sets is to compute the percentage of area covered

by the lower bound set found by one method with respect the other one.

Figure 8 reports the results obtained for Max-SAT-ONE problems with high induce width.

The sixth and eighth columns show the number of non-dominated points of the lower bound

set found by MO-MBE (for each configuration of parameter k) and BID-lb with a time limit

of 1800 seconds, respectively. The tenth column reports the ratio between the area covered

by MO-MBE(k) for different values of k with respect to the area covered by BID-lb (i.e.,

Springer

J Heuristics (2006) 12: 307–328 325

Fig. 8 Experimental results on Max-SAT-ONE problems. Each problem is solved with MO-MBE(k) and
BID-lb. Time limit 30 mins

Springer

326 J Heuristics (2006) 12: 307–328

Fig. 9 Experimental results on
biobjective weighted minimum
vertex cover problems. Parameter
C is set to 4. Mean values on 20
instances for each parameter
configuration. Time limit 30 mins

area MO-MBE(k)/area BID-lb). For aim instances, the first thing to be observed is that the

lowest value of k (i.e., k = 15) outperformes the approximations given by BID-lb for almost

all instances. Note that the time spent by MO-MBE(15) is less than 8 seconds for all those

instances while BID-lb reaches the time limit of 1800 seconds. Increasing the value of k
allows MO-MBE to compute much more accurate lower bound sets and therefore, the ratio

also increases. For ssa instances, the first thing to be noted is that the efficiency of BID-lb

is very bad. MO-MBE is from 501.95 to 7776.67 times better than BID-lb with the lowest

value of k. As before, the ratio increases with highest values of k.

For the second domain, we tested on samples of size 20 for the following parameter

configurations ({60, 70, 80, 90}, {500, 950}, 4). Figure 9 reports the results obtained for MO-

MBE for different values of the accuracy parameter k. The sixth column shows the ratio

between the area covered by the lower bound set found by MO-MBE(k) and BID-lb with

time limit 30 minutes. As can be observed, MO-MBE with the lowest value of k (i.e. k = 15)

outperforms BID-lb for all parameter configurations. Note that BID-lb reaches the time limit

for all instances, whereas the time spent by MO-MBE(15) is less than 2 seconds. When we fix

the number of constraints and increase the number of variables, the efficiency of MO-MBE

increases. When fixing the number of variables and increasing the number of constraints, the

performance of MO-MBE decreases.

7.5. MO-MBE for mono-objective problems

In our third and final experiment we analyze the applicability of MO-MBE in mono-objective

optimization problems with knapsack constraints. To that aim, we run MO-MBE on earth

observation instances with capacity constraint. One possible way to compute lower bounds

consists on removing the capacity constraint from the instances (the optimum of this relax-

ation will obviously be less than or equal to the optimum in the original problem) and then

execute classical MBE. An alternative is to reformulate the problem as bi-objective. The sum

Springer

J Heuristics (2006) 12: 307–328 327

Fig. 10 Experimental results on Spot5 instances. Each problem is solved with MO-MBE(k) and MBE(k)
with different values of k, and iterative deepening with IlogSolver as solver engine. Time limit 1800 seconds

of all cost functions constitute the first objective function F1. The capacity constraint is added

as a second objective function F2. We can execute MO-MBE. A third option to compute lower

bounds in mono-objective problems is to use iterative deepening (ID) in the objective func-

tion. In this case, when the available time is exceeded, the algorithm returns a lower bound

of the optimal value. The solver engine used for this algorithm is IlogSolver. Moreover, we

model the capacity constraint as an IlogSolver’s global constraint for improving its pruning

capabilities.

We compare these three approaches. Figure 10 reports the lower bounds obtained for

different values of parameter k as well as the CPU time required for each execution. It can

be observed that for all instances MO-MBE produces much higher lower bounds than MBE

and ID. While for the first two approaches, this is clearly true if we compare executions

with the same value of k, such comparison is not totally fair because MO-MBE has a higher

complexity due to the computation of multi-cost functions. However, if we look at executions

with a similar CPU time we still observe a clear dominance of MO-MBE.

8. Conclusion and future work

Problems involving the optimization of more than one objective are ubiquitous in real world

domains and little considered in the constraint community. In this paper we have extended

the weighted constraint satisfaction problem (WCSP) to multiobjective optimization (MO-

WCSP). Then, we have generalized bucket elimination (BE) and mini-bucket elimination

(MBE) to deal with MO-WCSP. We have shown that MO-BE can be used to solve true

multiobjective problems with bounded induced width, as well as mono-objective problems

with a few knapsack-like constraints when the induced width disregarding the knapsack

constraints is bounded. In the latter case, MO-BE may produce exponential savings over

the usual application of BE over the original mono-objective problem where the knapsack

constraints are taken into consideration in the induced graph. MO-MBE can be used to

compute lower bound sets of multiobjective problems. The accuracy parameter k of the

mini-buckets technique allows two potential uses of MO-MBE. With high values of k, it can

be used to obtain good quality lower bounds of problems that cannot be solved exactly. It can

be used in combination with metaheuristic algorithms in order to bound the actual efficient

Springer

328 J Heuristics (2006) 12: 307–328

frontier. With low values of k, it can be used inside a branch and bound solver to increase its

pruning capability.

In our current research we are considering the extension of MO-BE to the more general

framework of Semiring-based CSPs which allows a much more general specification of

multiobjective optimization. We are also interested in detecting other global constraints that

can be processed with multiobjective algorithms. Finally, we want to evaluate the practical

potential of branch and bound with MO-MBE for problems with unbounded induced width.

References

Bensana, E., M. Lemaitre, and G. Verfaillie. (1999). “Earth Observation Satellite Management.” Constraints
4(3), 293–299.

Bertele, U. and F. Brioschi. (1972). Nonserial Dynamic Programming. Academic Press.
Bistarelli, S., H. Fargier, U. Montanari, F. Rossi, T. Schiex, and G. Verfaillie. (1999). “Semiring-Based CSPs

and Valued CSPs: Frameworks, Properties and Comparison.” Constraints 4, 199–240.
Bistarelli, S., U. Montanari, and F. Rossi. (1997). “Semiring-Based Constraint Satisfaction and Optimization.”

Journal of the ACM 44(2), 201–236, March.
Brassard, G. and P. Bratley. (1995). Fundamentals of Algorithms. Prentice Hall, San Mateo, CA.
de Givry, S., G. Verfaillie, and T. Schiex. (1997). “Bounding the Optimum of Constraint Optimization Prob-

lems.” In Proc. of CP’97., Schloss Hagenberg (Austria). LNCS. Springer Verlag.
Dechter, R. (1999). “Bucket Elimination: A Unifying Framework for Reasoning.” Artificial Intelligence 113,

41–85.
Dechter, R. (2003). Constraint Processing. Morgan Kaufmann, San Francisco.
Dechter, Rina and Irina, Rish. (2003). “Mini-Buckets: A General Scheme for Bounded Inference.” Journal of

the ACM 50(2), 107–153, March.
Ehrgott, M. and X. Gandibleux. (2001). “Bounds and Bound Sets for Biobjective Combinatorial Optimization

Problems.” Lecture Notes in Economics and Mathematical Systems 507, 241–253.
Ehrgott, M. and X. Gandibleux. (2002). Multiple Criteria Optimization. State of the Art. Annotated Biblio-

graphic Surveys. Kluwer Academic Publishers.
Freuder, E.C. and R.J. Wallace. (1992). “Partial Constraint Satisfaction.” Artificial Intelligence 58, 21–70,

December.
Johnson, D.S. and M. Trick. (1996). “Second Dimacs Implementation Challenge: Cliques, Coloring and

Satisfiability.” DIMACS Series in Discrete Mathematics and Theoretical Computer Science. AMS 26.
Korf, R. (1985). “Depth-First Iterative-Deepening: An Optimal Admissable Tree search.” Artificial Intelligence

27(3), 97–109.
Larrosa, Javier and Emma, Rollon. (2004a). “Adaptive Consistency with Capacity Constraints.” In Workshop

on Modelling and Solving Problems with Constraints. ECAI’04.
Larrosa, Javier and Emma, Rollon. (2004b). “Bucket Elimination with Capacity Constraints.” In 6th Workshop

on Preferences and Soft Constraints. CP’04.
Meseguer, P., J. Larrosa, and M. Sanchez. (2001). “Lower Bounds for Non-Binary Constraint Optimization

Problems.” In CP-2001, pp. 317–331.
Neveu, Bertrand and Gilles, Trombettoni. (2003). “When Local Search Goes with the Winners.” In 5th Int.

Workshop on Integration of AI and OR techniques in Constraint Programming for Combinatorial Opti-
misation Problems, CPAIOR 2003.

Quimper, C., A. Lopez-Ortiz, P. van Beek, and A. Golynski. (2004). “Improved Algorithms for the Global
Cardinality Constraint.” In Proc. of the 10th CP, pages 542–556, Toronto (CA). LNCS 3258. Springer
Verlag.

Regin, J.C. (1994). “A Filtering Algorithm for Constraints of Difference in CSPs.” In Proceedings of the 12th
AAAI, pp. 362–367.

Schiex, T., H. Fargier, and G. Verfaillie. (1995). “Valued Constraint Satisfaction Problems: Hard and Easy
Problems.” In IJCAI-95, pages 631–637, Montréal, Canada, August.

Sellmann, Meinolf. (2003). “Approximated Consistency for Knapsack Constraints.” In Proc. of the 9th CP,
pages 679–693. LNCS 2833. Springer Verlag.

Trick, Michael. (2003). “A Dynamic Programming Approach for Consistency and Propagation for Knapsack
Constraints.” Annals of Operations Research 118(118), 73–84.

van Hentenryck, P., H. Simonis, and M. Dincbas. (1992). “Constraint Satisfaction Using Constraint Logic
Programming.” Artificial Intelligence 58, 113–159.

Springer

