Semiring-Based Mini-Bucket Partitioning Schemes

Emma Rollon and Javier Larrosa
{erollon, larrosa}@lsi.upc.edu
Universitat Politècnica de Catalunya, Barcelona, Spain

Rina Dechter
dechter@ics.uci.edu
University of California, Irvine, USA

Abstract

Graphical models are one of the most prominent frameworks to model complex systems and efficiently query them. Their underlying algebraic properties are captured by a valuation structure that, most usually, is a semiring. Depending on the semiring of choice, we can capture probabilistic models, constraint networks, cost networks, etc. In this paper we address the partitioning problem, which occurs in many approximation techniques such as mini-bucket elimination and join-graph propagation algorithms. Roughly speaking, subject to complexity bounds, the algorithm needs to find a partition of a set of factors such that best approximates the whole set. While this problem has been addressed in the past in a particular case, we present here a general description. Furthermore, we also propose a general partitioning scheme. Our proposal is general in the sense that it is presented in terms of a generic semiring with the only additional requirements of a division operation and a refinement of its order. The proposed algorithm instantiates to the particular task of computing the probability of evidence, but also applies directly to other important reasoning tasks. We demonstrate its good empirical behaviour on the problem of computing the most probable explanation.

1 Introduction

The graphical model framework provides a common formalism to model complex systems such as probabilistic models, which includes Markov and Bayesian networks [Pearl, 1988], and deterministic models, which includes constraint networks [Bistarelli et al., 1999] and decision diagrams [Dechter, 2003]. In general, a graphical model is defined by a collection of functions or factors F over a set of variables X. Factors return values from a valuation set A. Depending on each particular case, functions may express probabilistic, deterministic or preferential information. Given a graphical model, one can compute different reasoning tasks. A reasoning task is defined by two operators \otimes and \odot, where the triplet (A, \odot, \otimes) constitutes a semiring.

Since the exact computation of reasoning tasks is in general intractable, several approximation methods exist. Some of them need to solve internally an optimization problem over the set of partitions of a set of factors. Although it is known that the quality of the approximation depends greatly on the quality of the partitions, little research has been done on it.

This paper builds on top of the recent work of [Rollon and Dechter, 2010], where a greedy scheme is proposed for solving the partitioning problem of the very specific task of computing the probability of certain evidence. Our paper generalizes the partitioning problem and the greedy scheme to general tasks on graphical models. We show that the generalization applies as long as the semiring admits a division operator and a refinement of its order, which is the most usual case. Furthermore, we show the potential of this general partitioning scheme on the task of finding the most probable explanation of probabilistic networks.

2 Preliminaries

2.1 Semirings

A commutative semiring [Kohlas and Wilson, 2008] is a triplet (A, \otimes, \odot), where A is a set, and \otimes, \odot are binary operations. Both operations are associative and commutative. Additionally, \otimes distributes over \odot (i.e., $(a \otimes b) \odot (a \otimes c) = a \otimes (b \odot c)$). Commutative semirings have a unique 0 element such that $0 \odot a = 0$. Additionally, they implicitly define a pre-order relation \leq as $a \leq b$ (i.e., b is better than a) iff $a = b$ or there exists $c \in A$ such that $a \otimes c = b$. In this paper we will restrict ourselves to semirings whose pre-order is a partial order.

Proposition 1 For any semiring (A, \odot, \otimes), its associated relation \leq satisfies:
1. $a \leq b$ and $c \leq d$ implies $a \otimes c \leq b \otimes d$.
2. $a \otimes b \leq c \otimes b$ implies $a \leq c$.

In this paper we will consider invertible semirings [Kohlas and Wilson, 2008; Bistarelli and Gadducci, 2006; Cooper and Schiex, 2004; Lauritzen and Jensen, 1997], for which a division operation $a \odot b$ exists. Division satisfies that for all $a, b \in A$ such that $a \leq b$ and $a \neq 0$, $(a \odot b) \otimes b = a$. When $a \leq b$ and $a = 0$, we follow the approach in [Cooper and Schiex, 2004] and define $0 \otimes b = 0$.

2.2 Factors

Let \(\mathcal{X} = (x_1, \ldots, x_n) \) be an ordered set of variables and \(\mathcal{D} = (D_1, \ldots, D_n) \) an ordered set of domains, where \(D_i \) is the finite set of potential values for \(x_i \). \(\mathcal{D} \) is the set of possible assignments of \(\mathcal{X} \). Tuples are assignments of domain values to some or all the variables. The join of two tuples \(t \) and \(s \) is noted \(t \cdot s \).

A factor [Darwiche, 2009; Kask et al., 2005] \(f \) with scope \(\mathcal{Y} \subseteq \mathcal{X} \) is a function \(f : \mathcal{D}^\mathcal{Y} \rightarrow A \), where \(A \) is a semiring. The evaluation of factor \(f \) on tuple \(t \) will be noted \(f(t) \). If \(f \) assigns more values than needed, they will be ignored. The scope of factor \(f \) will be denoted \(\text{var}(f) \).

The semiring order can also be extended to factors: \(f \leq h \) iff \(\forall t \in \mathcal{D}^{\text{var}(f) \cup \text{var}(h)}, f(t) \leq h(t) \). Note that this is a very coarse partial ordering. It requires the order of every tuple to be ordered. It may be the case of a function being almost always smaller than another and yet the partial order will not be able to discriminate between them.

Operations over valuations can be extended to functions:

- The combination of two functions \(f \) and \(g \), noted \(f \otimes g \), is a new function with scope \(\text{var}(f) \cup \text{var}(g) \) such that, \(\forall t \in \mathcal{D}^{\text{var}(f) \cup \text{var}(g)}, (f \otimes g)(t) = f(t) \cdot g(t) \).
- The division of two functions \(f \) and \(g \) such that \(\forall t \in \mathcal{D}^{\text{var}(f) \cup \text{var}(g)}, f(t) \leq g(t) \), noted \(f \oslash g \), is a new function with scope \(\text{var}(f) \cup \text{var}(g) \) such that, \(\forall t \in \mathcal{D}^{\text{var}(f) \cup \text{var}(g)}, (f \oslash g)(t) = f(t) \oslash g(t) \).
- The marginalization of \(f \) over \(X \subseteq \text{var}(f) \), noted \(f \downarrow_{X} \), is a function whose scope is \(\text{var}(f) \setminus X \) such that, \(\forall t \in \mathcal{D}^{\text{var}(f) \setminus X}, (f \downarrow_{X})(t) = \bigvee_{v \in \mathcal{D}_X} f(t \cdot v) \).

2.3 Graphical Models and Reasoning Tasks

A graphical model is a set of factors \(F \) over a set of variables \(\mathcal{X} \) with domains \(\mathcal{D} \). A reasoning task is defined by \(P = (\mathcal{X}, \mathcal{D}, A, F, \otimes, \otimes) \) where \((\mathcal{X}, \mathcal{D}, F) \) is a graphical model and \((A, \otimes, \otimes) \) is a semiring. Computing the reasoning task means computing \((\otimes_{f \in F} f) \downarrow_{x_1, x_2, \ldots, x_n} \).

Example 1 In probabilistic graphical models valuations are probabilities (i.e., \(A = [0, 1] \)), the \(\otimes \) operation is the product and the \(\odot \) operation is the division. For the reasoning task of finding the probability of evidence, the \(\odot \) operation is the sum. For the reasoning task of finding the most probable explanation, the \(\odot \) operation is the maximum.

In standard constraint networks we have boolean valuations (i.e., \(A = \{\text{true}, \text{false}\} \)), the \(\otimes \) operation is the conjunction and the \(\odot \) operation is also the conjunction. For the reasoning task of finding solutions, the \(\odot \) operation is the disjunction \(\lor \). For the reasoning task of counting solutions, the \(\odot \) operation is the sum.

In weighted constraint networks valuations are natural numbers with infinity (i.e., \(A = \mathbb{N} \cup \{\infty\} \)), the \(\otimes \) operation is the sum and the \(\odot \) is the subtraction. For the reasoning task of finding optimal solutions, the \(\odot \) operation is the minimum. For the reasoning task of counting weighted solutions, the \(\odot \) operation is the sum.

Figure 1: Partitioning lattice of bucket \(\mathcal{B} = \{f_1, f_2, f_3, f_4\} \). We specify each function by its subindex.

3 The Partitioning Problem

Computing reasoning tasks is in general intractable. Thus, several approximation methods have been proposed. Some of them (such as mini-bucket elimination [Dechter and Rishi, 2003] or join-graph propagation algorithms [Mateescu et al., 2010]) require the computation of a good partition out of a set of factors, as described in the following.

A bucket \(\mathcal{B} \) is a set of factors, all of which have a certain variable \(x \) in their scope. The scope of the bucket is the set of all variables in the scopes of its factors. The bucket function is,

\[
\mu = (\bigotimes f) \downarrow_x \quad \text{if } f \in \mathcal{B}
\]

Let \(Q = \{Q_1, Q_2, \ldots, Q_k\} \) be a partition of bucket \(\mathcal{B} \). Each partition element is called a mini-bucket. We say that \(Q \) is a \(z \)-partition if the scope size of all its mini-buckets is smaller than or equal to \(z \). The function of partition \(Q \) is,

\[
\mu^Q = k \sum_{j=1}^{k} (\bigotimes_{f \in Q_j} f) \downarrow_x
\]

The rationale of the approximation is that \(\mu^Q \) is likely to resemble \(\mu \), while being computationally simpler. More precisely, if \(Q \) is a \(z \)-partition, the cost of computing \(\mu^Q \) is, at most, exponential in \(z \). Approximation algorithms replace the bucket function by a function of one partition, for a fixed parameter \(z \). Thus, it is of utmost importance finding the \(z \)-partition whose function resembles \(\mu \) as much as possible.

3.1 The Partitions Lattice

Given a bucket \(\mathcal{B} \), the set of all its partitions can be arranged as a lattice [Rollon and Dechter, 2010]. There is an upward edge from \(Q \) to \(Q' \) if \(Q' \) results from merging two mini-buckets of \(Q \) in which case \(Q' \) is a child of \(Q \). The set of all children of \(Q \) is denoted by \(\text{ch}(Q) \). The bottom partition in the lattice, noted \(Q^\bot \), is the partition where every mini-bucket consists of a single function, while the top partition, noted \(Q^\top \), is the partition with one mini-bucket containing all functions. Note that \(Q^\top \) is equivalent to the whole bucket.

Example 2 Figure 1 depicts the partitioning lattice of bucket \(\mathcal{B} = \{f_1, f_2, f_3, f_4\} \). Its bottom partition \(Q^\bot \) is \(\{(f_1), (f_2), (f_3), (f_4)\} \), while its top partition \(Q^\top \) is \(\{(f_1, f_2, f_3, f_4)\} \). Partition \(Q = \{(f_1, f_2), (f_3, f_4)\} \) is a
child of partition \(Q' = \{\{f_1\}, \{f_2\}, \{f_3, f_4\}\} \) because \(Q \) merges mini-buckets \(\{f_1\} \) and \(\{f_2\} \) in \(Q' \). However, \(Q \) is not a child of partition \(\{\{f_1\}, \{f_3\}, \{f_2, f_4\}\} \).

Clearly, the set of \(z \)-partitions, for a given \(z \), divides the lattice in two regions: the bottom region contains the \(z \)-partitions whose implicit function can be efficiently computed and the top bottom contains the rest of partitions whose implicit function is expensive.

There is a close relation between lattice edges and the partial order of the partition’s implicit functions.

Theorem 1 [Dechter and Rish, 2003; Bistarelli et al., 1997] Given two partitions \(Q \) and \(Q' \) of bucket \(B \), if \(Q' \) is a descendant of \(Q \) then \(\mu Q' \leq \mu Q \).

The previous theorem indicates that following any bottom-up path the implicit functions decrease monotonically. Thus, as we follow the path, we obtain better approximations of the bucket function \(\mu \). Thus, given \(z \), the low region of the lattice corresponds to more dissimilar functions, while the high region corresponds to more similar functions.

It is worth to mention that the lattice edges does not explicit all the orders among implicit functions. Some functions from different paths may also be ordered by the partial order although their partitions are not upward connected in the lattice.

3.2 Similarity Functions

The division allows us to capture how similar two functions are. Given two partitions \(Q, Q' \) such that \(\mu Q' \leq \mu Q \), we define the similarity function of \(Q \) and \(Q' \), noted \(\delta^{Q \rightarrow Q'} \), as

\[
\delta^{Q \rightarrow Q'} = \mu Q' \otimes \mu Q
\]

Moreover, it can be shown that it is more efficiently computed as,

\[
\delta^{Q \rightarrow Q'} = \mu Q' \setminus I \otimes \mu Q \setminus I
\]

where \(I = Q \cap Q' \) is the set of common subsets.

There is a relation between the order among functions of partitions and their similarity delta functions.

Theorem 2 Let \(Q, Q', Q'' \) be three partitions. Then,

\(\mu Q \leq \mu Q' \leq \mu Q'' \iff \delta^{Q' \rightarrow Q} \geq \delta^{Q'' \rightarrow Q} \)

and

\(\mu Q \leq \mu Q' \leq \mu Q'' \iff \delta^{Q' \rightarrow Q''} \geq \delta^{Q'' \rightarrow Q} \)

As a consequence, there is a relation among any partition and the top and bottom partitions.

Corollary 1 Let \(Q', Q'' \) be two partitions. Then,

\(\mu Q' \leq \mu Q'' \iff \delta^{Q' \rightarrow Q''} \geq \delta^{Q'' \rightarrow Q'} \)

and

\(\mu Q' \leq \mu Q'' \iff \delta^{Q' \rightarrow Q''} \geq \delta^{Q'' \rightarrow Q'} \)

3.3 Formal Definition

We are now in the position of defining and discussing the partitioning problem. Given a bucket \(B \) and a complexity parameter \(z \), find a \(z \)-partition \(Q^* \) that maximally resembles \(Q^\top \). That is,

\[
Q^* = \arg \max_{Q} \{\delta^{Q \rightarrow Q^\top}\}
\]

where \(\max \) uses the order among functions, and \(Q \) is a \(z \)-partition.

A close look at the problem definition shows that the objective function may not be sufficiently discriminative. The reason is that the objective function is partially ordered with very strong requirements for one partition being better than another. As an example, consider two partitions \(Q \) and \(Q' \) such that \(\delta^{Q \rightarrow Q^\top} (t) \leq \delta^{Q' \rightarrow Q^\top} (t) \) for every tuple \(t \) except one. Both partitions would be consider as equally good in the problem formulation, while commonsense clearly dictates that \(Q' \) should be preferred.

One way to overcome this limitation is to refine the partial order \(\leq \) among functions. A refinement is a partial order \(\leq_d \) such that if \(f \leq g \) then \(f \leq_d g \). To be useful in practice, the refinement should also order pairs of functions where one of them mainly dominates the other. We introduce this idea in a refined version of the partitioning problem.

Given a bucket \(B \), a complexity parameter \(z \) and a refinement of the partial order over the functions \(\leq_d \), the goal is to find a \(z \)-partition \(Q^* \) that maximally resembles \(Q^\top \) according to \(\leq_d \). Formally,

\[
Q^* = \arg \max_{Q} \{\delta^{Q \rightarrow Q^\top} \}
\]

where \(\max \) uses the \(\leq_d \) refinement, and \(Q \) is a \(z \)-partition.

Note that any optimal solution of the refined partitioning problem is also an optimal solution of the original partitioning problem, while the opposite does not hold.

4 A Greedy Algorithm for the Partitioning Problem

There are two difficulties associated with solving the (refined) partitioning problem. On the one hand, the size of the search space may be too large to be traversed (larger than exponential in the number of factors in the bucket). On the other hand, evaluating \(\delta^{Q \rightarrow Q^\top} \) may be too expensive (exponential in the scope of the full bucket).

In the following, we propose solutions to overcome these difficulties. There are several well-known ways to deal with the first issue. Following [Rollon and Dechter, 2010], we take a simple approach and use a greedy procedure that only expands the most promising path. For the second issue we propose an incremental way to compute the objective function of a partition from its parent.

4.1 The Greedy Algorithm

Algorithm 1 shows the pseudo-code of the greedy scheme. Starting at the bottom partition \(Q^\top \) of bucket \(B \), the algorithm iteratively selects and moves to the best child until a maximal \(z \)-partition is found. At each step, the algorithm selects the maximal child \(Q' \) of \(Q \) according to \(\leq_d \) and the similarity function between \(Q' \) and the top partition \(Q^\top \) (i.e., \(\delta^{Q' \rightarrow Q^\top} \)).
4.2 Incremental computation of the objective function

An additional problem of the greedy algorithm is that computing \(\delta^{Q \to Q'} \) is too expensive in practice. Note that it may be exponential in the scope of the bucket. This is not acceptable in the context of mini-buckets or other bounded complexity algorithms, because every computation should be less than exponential on bounding parameter \(z \).

However, we can take advantage of the similarity between a partition and its children, since they only differ on two partition elements. Let \(Q^{jk} \) be a child of \(Q \) in which mini-buckets \(Q_j \) and \(Q_k \) have been merged. The only difference between \(\mu^{Q_j} \) and \(\mu^{Q^{jk}} \) is that \(\mu^{Q_j} \otimes \mu^{Q_k} \) is replaced by \(\mu^{(Q_j \cup Q_k)} \). Therefore, the similarity function is

\[
\delta^{Q \to Q^{jk}} = \mu^{(Q_j \cup Q_k)} \bigotimes (\mu^{Q_j} \otimes \mu^{Q_k})
\]

Note that this function captures somehow the decrement ratio caused by the transition.

When the greedy algorithm visits partition \(Q \) and considers which child to move to, it would be good to evaluate the different alternatives by comparing the different decrements that the movements would cause. From Theorem 2, we know that given three partitions \(Q, Q', Q'' \) such that \(Q', Q'' \in \text{ch}(Q) \), then

\[
\delta^{Q' \to Q''} \geq \delta^{Q' \to Q'} \iff \delta^{Q' \to Q''} \leq \delta^{Q' \to Q''}
\]

However, the previous property does not hold in general when \(\leq d \) is replaced by \(\leq \delta \). When a refinement \(d \) preserves this property, we say that it is greedily optimal. In that case line 3 of Algorithm 1 can be replaced by,

\[
Q \leftarrow \arg \min_{Q'} \{ \delta^{Q' \to Q'} \}
\]

without affecting its behaviour.

The obvious advantage of this new formulation is that the optimization criterion is much cheaper to compute. In particular, it is at most exponential in \(z \), because, by definition, the algorithm only considers successors which are \(z \)-partitions. Therefore, it is consistent with the mini-buckets time complexity bounds.

5 Empirical Evaluation

We evaluate the performance of the semiring-based partitioning scheme on the task of computing the Most Probable Explanation (MPE). We apply the well-known logarithmic transformation with which the problem becomes an additive minimization problem over the naturals (equivalent to a weighted constraint satisfaction problem [Park, 2002]).

5.1 Refinements \(d \) for the MPE task

We consider two refinements for the partial order among functions that already showed good behaviour in the problem of computing the probability of evidence [Rollon and Dechter, 2010]:

1. \(\leq \text{avg-}L^1 \), called average 1-norm order, defined as:

\[
f \leq \text{avg-}L^1 \ g \iff \frac{1}{|D_f|} \sum_i f(t) \geq \frac{1}{|D_g|} \sum_i g(t)
\]

2. \(\leq L^\infty \), called \(\infty \)-norm order, defined as:

\[
f \leq L^\infty \ g \iff \max_i \{ f(t) \} \geq \max_i \{ g(t) \}
\]

It is easy to see that both \(\leq \text{avg-}L^1 \) and \(\leq L^\infty \) are refinements of the order among functions. Moreover, both are computed in time proportional to the size of \(f \) and \(g \). It is also worth mentioning that \(\leq \text{avg-}L^1 \) is greedily optimal, while \(\leq L^\infty \) is not.

Finally, it is important to observe that when the problem has \(\infty \) valuations (i.e., zero probabilities in the original probabilistic model), there may exist some tuples for which their evaluation in a delta function is \(\infty \). Both average 1-norm and \(\infty \)-norm return \(\infty \) for those functions. If more than one child of \(Q \) is ranked as \(\infty \), the selection among them would be uninformed. When using the average 1-norm we replace the infinities by very high numbers. When using \(\infty \)-norm we discriminate by counting the number of occurrences of infinities. In both cases, the goal is to let the infinity be very influential, but not absorbing.

5.2 Algorithms and Benchmarks

We compare three partitioning schemes: (i) the scope-based scheme (SCP) described in [Rollon and Dechter, 2010; Dechter and Rish, 1997]; (ii) our \(\infty \)-norm refinement (\(L^\infty \)); and (iii) our average \(\infty \)-norm refinement (\(\text{avg-}L^\infty \)). Roughly, SCP aims at minimizing the number of mini-buckets in the partition by including in each mini-bucket as many functions as possible as long as the \(z \) bound is satisfied.

We report the results for mini-bucket elimination (MBE) [Dechter and Rish, 2003] and for the recently proposed mini-bucket elimination with max-marginal matching (MBE-MM) [Ihler et al., 2012]. Briefly, MBE-MM introduces a cost propagation phase once the partition is built, and it was shown to obtain accurate bounds for a number of benchmarks. Both algorithms use the variable elimination ordering established by the \(\min\text{-fill} \) heuristic after instantiating evidence variables (if any).

We conduct our empirical evaluation on three benchmarks: coding networks, two sets of linkage analysis (denoted pedigree and Type A), and noisy-or bayesian networks. All instances are included in the UAI08 evaluation\(^1\). Table 1 reports

\(^1\)http://graphmod.ics.uci.edu/uai08/Software
5.3 Experimental Results

Coding Networks. For MBE, L^∞ and $\text{avg} - L^1$ outperforms SCP on five instances each when $z = 20$, and on six and four instances, respectively, when $z = 22$. When they are better, the increment of the bound is usually of more than one order of magnitude. For MBE-MM, L^∞ outperforms SCP on four and seven instances when $z = 20$ and $z = 22$, respectively, while $\text{avg} - L^1$ does so on three and four instances. The improvement is not as dramatic as with standard MBE, but for some instances it is still of orders of magnitude.

As observed in [Ihler et al., 2012], MBE-MM using SCP is always superior to MBE using SCP. In this benchmark, we also see that: (i) for any fixed partitioning scheme MBE-MM is superior to MBE; (ii) MBE-MM using SCP is always superior to MBE using any partitioning scheme; and (iii) MBE-MM benefits from the semiring-based partitioning scheme (in particular, from L^∞).

As expected, all semiring-based partitioning schemes are slower than SCP. The reason is that during the traversal of the partitioning lattice semiring-based heuristics have to compute intermediate functions that the greedy algorithm will eventually discard.

Linkage Analysis. For MBE, we see that semiring-based schemes generally outperform SCP. For pedigree instances and $z = 17$, the increase is very often of orders of magnitude. When $z = 19$ we observe the same improvement very often. For Type_4 instances, the increment is in general of more than one order of magnitude for both values of the control parameter z.

For MBE-MM, each of the semiring-based schemes also outperforms in general SCP. Again, the improvement margin is reduced with respect to standard MBE. For pedigree instances, the improvement is in some cases of orders of magnitude, while for Type_4 instances, the increase is still in general of orders of magnitude for both values of z. It is also important to note that, in some cases, the effect of the cost propagation leads all partitioning schemes to obtain the same bound on pedigree instances (i.e., pedigree-18 and pedigree-25).

As for the previous benchmark, MBE-MM using SCP is always superior to MBE using any partitioning scheme. The only exceptions are instances pedigree-20 and pedigree-33 and $z = 17$. Again, running MBE-MM with one of the semiring-based schemes seems a better choice than running MBE.

The cpu time of all partitioning schemes is relatively close. The only exceptions are four instances on pedigree instances (i.e., pedigree-31, pedigree-34, pedigree-37, and pedigree-41) and two on Type_4 instances (i.e., Type_4-140-14-19 and Type_4-140-19), where semiring-based partitioning schemes are 2 to 3 times slower than SCP.

Noisy-or Bayesian Networks. For space reasons, we only report results on bn2o-30-20-200 instances. Results for bn2o-30-15-150 and bn2o-30-25-250 instances are similar.

For MBE, each semiring-based partitioning scheme is always superior to SCP for both values of z. The only exception is instance bn2o-30-20-200-3b, for which L^∞ is inferior to SCP when $z = 17$. For MBE-MM, each semiring-based scheme outperforms SCP in general, although the improvement margin is less notable. In some cases, the effect of cost propagation yields all heuristics to obtain the same bound. Yet, running MBE-MM using one semiring-based partitioning scheme seems the best choice for this benchmark.

6 Conclusions and Future Work

This paper generalizes the partitioning problem proposed in [Rollon and Dechter, 2010] to any task defined as a graphical model. The generalization is possible under a semiring with an additional division operation and a refinement of its order. These requirements can be considered as mild because they are satisfied by the usual tasks such as counting and optimization. We propose a general greedy scheme to solve this problem efficiently. Finally, we propose two particular order refinements for optimization tasks. These refinements are based on two well-known metrics as 1-norm and ∞-norm.

Our experimental results show that the semiring-based partitioning schemes improve significantly in many cases the accuracy of the standard MBE. When this algorithm is enhanced with a cost propagation phase (i.e., MBE-MM), the impact of the partitioning schemes is reduced, but still quite remarkable. Overall, the empirical evaluation suggests that the best bounds are obtained with MBE-MM using a semiring-based partitioning scheme at the cost only of a constant increase in time.

In our future work we want to investigate the impact of the semiring-based partitioning schemes on other partition-based algorithms as join-graph propagation algorithms [Mateescu et al., 2010], and as heuristic generator. We also want to explore the impact of alternative refinements and if the accuracy of the refinements depends on the task at hand. Finally, we want to study the effectiveness of more sophisticated algorithms beyond our greedy approach.

Acknowledgments

This work was supported by project TIN2009-13591-C02-01 and NSF grant IIS-1065618.

References

id	z	a	b	c	d	e	f	g	h	i	j	k	l	m	n	o	p	q	r	s	t	u	v	w	x	y	z
120	20	2.31	18.54	15.89	105.456	11.78	44.9071	8.05	43.5502	69.11	24.6352	81.9	45.3130														
120	20	2.64	49.5389	16.77	48.5490	14.76	43.2983	22.10	10.48	42.152	59.2	48.7722	52.79	47.5072													
120	20	2.8	48.3137	17.33	40.0884	19.36	37.7777	22.10	10.48	42.152	59.2	48.7722	52.79	47.5072													
129	20	2.31	37.9611	13.61	47.3930	13.11	44.4112	7.59	49.4298	45.8	44.5064	46.29	45.1959														
129	20	2.6	60.9342	17.11	47.5461	10.01	44.3112	8.57	47.4710	44.36	49.0464	46.27	46.4622														
129	20	2.67	57.0102	16.05	46.6702	14.66	50.6274	26.74	7.65	49.0865	46.95	49.6622	47.12	47.12													
129	20	2.67	60.4054	14.48	49.3534	14.76	49.6651	10.26	20.5320	42.88	50.8469	47.95	51.3869														
129	20	2.69	46.6227	15.22	43.5029	14.47	49.4447	10.95	43.9617	57.32	44.0149	49.96	51.3868														
129	20	2.73	40.3684	15.41	48.8496	19.52	55.2500	29.50	13.5338	60.72	52.9941	48.99	52.7696														
129	20	2.76	36.6428	19.86	56.6457	17.54	55.6573	25.38	55.9840	55.95	58.3702	58.06	52.7696														
129	20	2.79	50.8030	19.13	50.1550	17.39	57.1162	24.93	50.1155	56.97	50.7690	61.15	50.4601														
129	20	2.84	40.0489	17.88	50.0690	18.10	52.1087	29.10	52.9108	65.72	53.9257	66.12	52.9254														

130	20	6.30	30.0968	19.09	51.4261	16.95	51.9907	23.87	52.1086	50.77	51.9301	50.47	52.0569	
130	20	8.5	43.1211	21.15	53.8900	18.54	54.1132	20.35	54.9843	73.46	45.9302	63.99	53.8129	
130	20	8.1	46.3024	24.22	46.0961	17.91	46.0335	29.67	46.3810	72.93	46.9670	68.01	46.2075	
130	20	8.4	52.7257	17.32	52.9271	17.48	52.9271	26.24	46.6421	60.04	47.1362	55.24	52.5566	
130	20	7.52	59.1169	16.69	55.3953	16.83	55.2183	26.74	7.65	49.0865	46.95	49.6622	47.12	47.12
130	20	7.9	53.9259	18.62	53.9525	16.32	52.5565	25.85	53.1338	60.72	52.9941	48.99	52.7696	
130	20	7.6	56.6457	19.86	56.6457	17.54	55.6573	25.38	55.9840	55.95	58.3702	58.06	52.7696	
130	20	7.29	50.8030	19.13	50.1550	17.39	57.1162	24.93	50.1155	56.97	50.7690	61.15	50.4601	

Table 1: Empirical results on coding, linkage analysis, and noisy-or Bayesian networks for the task of computing the MPE. The table reports log(upper bound) (i.e., a lower bound on the log scale) obtained by MBE and MBE-MM for different values of the sparsification parameter and different partitioning methods. For scope-based (SCP), the number of variables (avg-L) is also given. The first column (Id) shows the name of the instance: for coding networks the name is BnId; for pedigree networks the name is pedigree-Id and Typed-Id. For the first and second set of instances, respectively; and, for noisy-or Bayesian networks the name is bno2-30-20-200-Id. We highlight in bold face the best lower bound for each instance and value of z.

