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Abstract. Bounding constraints are used to bound the tolerance of
solutions under certain undesirable features. Standard solvers prop-
agate them one by one. Often times, it is easy to satisfy them in-
dependently, but difficult to satisfy them simultaneously. Therefore,
the standard propagation methods fail. In this paper we propose a
novel approach inspired in multi-objective optimization. We com-
pute a multi-objective lower bound set that, if large enough, can be
used to detect the inconsistency of the problem. Our experiments on
two domains inspired in real-world problems show that propagation
of additive bounding constraints using our approach is clearly supe-
rior than previous approaches.

1 Introduction

A constraint satisfaction problem (CSP) requires the assignment of a
set of variables in such a way that a set of constraints is satisfied.
Many problems have constraints that refer to different objectives.
Consider the scheduling of a major football league. A good sched-
ule should be fair (no team should feel that is treated much worse
than any other,...), exciting (e.g., hot games should be scheduled in
accordance to TV requests, several hot games should not take place
the same day, ...), safe (e.g., rival teams should not play simultane-
ously in close stadiums, teams with violent followers should not play
late in the evening or near a play-ground in the afternoon), etc. One
way to deal with different criteria is to establish tolerance bounds for
each one, and find satisfying assignments with respect to all of them.
Often, these constraints are in conflict, meaning that assignments that
are good with respect one constraint are likely to be bad with respect
another. Typically, it is easy to satisfy each constraint independently,
but it is hard to satisfy all of them simultaneously. Hence, the diffi-
culty lays on the conjunction.

CSPs are usually solved by searching on the tree of possible as-
signments. After each assignment a propagation process takes place.
Its goal is to detect if the current assignment can be extended to a so-
lution. Most propagation algorithms detect and discard domain val-
ues that are inconsistent with the current assignment. If some variable
loses all its values, the algorithm backtracks. Typically, each con-
straint is propagated independently. Namely, a value is removed if it
is shown to be inconsistent with respect one of the constraints. The
only communication between constraints is through value pruning
(pruning one value due to one constraint, may produce the pruning
of another value due to another constraint, yielding a cascade effect).
This solving approach may not be strong enough for problems with
conflicting bounding constraints. Consider the following two con-
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strains over 0-1 variables:

x1x2 + x2x3 + x3x4 ≥ 1;
4

X

i=1

xi ≤ 1

Note that every value is consistent with respect each constraint, be-
cause every value can be extended to satisfy it. However, it is clear
that no value is consistent with respect the two simultaneously. This
is a simple example that many solvers would deal efficiently with.
However, we will show in Section 4 that, if constraints are more in-
tricate, standard solvers may perform poorly.

We propose a more appropriate propagation method. Essentially,
our approach consists on considering CSP subproblems as multi-
objective minimization problems. The set of tolerance bounds plays
the role of a multi-objective upper bound. Then, we compute a multi-
objective lower bound that, if large enough, allows backtracking.
More precisely, we use multi-objective mini-bucket elimination (MO-
MBE) [10] as a general parameterizable multi-objective lower bound
algorithm. Our experiments on two domains inspired on real world
problems show the suitability of our approach.

2 Preliminaries

2.1 CSPs, Bounding Constraints, and MBE

A constraint satisfaction problem (CSP) is a triplet P = (X ,D,R)
where X is an ordered set of variables. Each variable xi ∈ X takes
values on a finite domain Di ∈ D.R is a set of constraints. For con-
venience, we will consider that a constraint c ∈ R is a boolean func-
tion over a subset of the variables var(c) ⊆ X called its scope. A tu-
ple t is a (possibly partial) assignment over a subset of the variables
var(t) ⊆ X . A singleton tuple is noted (xi ← a) and the join of
two tuples is noted t · t′. If var(t) = var(c), then c(t) tells whether
the assignment is allowed by the constraint. We allow partial assign-
ments of functions. Thus, if var(t) ⊂ var(c), then c(t) is a new
constraint in which variables of var(t) have been fixed as indicated
by t, and its new scope is var(c)−var(t). If var(t) 6⊆ var(c), then
c(t) is the partial assignment of c with respect to var(t) ∩ var(c).
A solution of a CSP is a complete assignment that satisfies all the
constraints. Solving a CSP is in general NP-complete.

An additive bounding constraint is a pair (F ,>), where f ∈ F
are cost functions and > ∈ N is the maximum acceptable cost. For
convenience, we define the sum of costs as u⊕ v = min{u + v,>}
Tuple t satisfies the constraint iff,

X

f∈F

f(t) < >

In this paper we will consider CSPs with p > 1 additive bound-
ing constraints. Note that we do not make any assumption over cost
functions f ∈ F , which makes the concept of additive bounding



function MBE(z,F ,>)
1. for each i = n..1 do
2. Bi := {f ∈ F | xi ∈ var(f)}
3. {Pi1 , . . . ,Pir} := Partition(z,Bi);
4. for each k = 1..r do gik

:= (
P

f∈Pik

f) ↓ xi;

5. F := (F ∪ {gi1 , . . . , gir})− Bi;
6. endfor
7. return g1;
endfunction

Figure 1. Mini-Bucket Elimination algorithm.

constraint extremely general. Besides, the ideas that we will intro-
duce directly apply to more general bounding constraints such as
semiring-based [2].

In recent years, many propagation algorithms for additive bound-
ing constraints have been proposed. For instance, all weighted CSP
local consistencies [9, 3] can be used for this purpose. Another al-
ternative is mini-bucket elimination MBE [6], which is the basis of
our work. The main advantage of MBE over local consistencies is
its control parameter z that allows to trade resources for accuracy.
For our purposes in this paper, MBE has the additional advantage
of being extendible to multi-objective optimization. The main disad-
vantages are that MBE cannot be easily used for filtering [5] and that
its implementation inside a solver is not incremental. MBE uses the
following two operations over cost functions.

• Let f and g be two cost functions. Their sum, denoted f + g, is a
new function with scope var(f) ∪ var(g) defined as,

(f + g)(t) = f(t)⊕ g(t)

• Let f be a cost function. The elimination of xi, f ↓ xi, is a new
function with scope var(f)− {xi} defined as,

f ↓ xi(t) = min
a∈Di

{f(t · (xi ← a))}

Figure 1 shows MBE. It receives an additive bounding constraint
(F ,>) and returns a lower bound of the best assignment. MBE can
be used as a propagation procedure inside search, because if the
lower bound equals >, the constraint cannot be satisfied and the cur-
rent line of search can be abandoned. MBE processes variables in
decreasing order. For each variable xi, it computes Bi the set of cost
functions having xi in the domain. Bi is partitioned into subsets such
that the join scope has size at most z+1. The functions of each subset
are summed and variable xi is eliminated. After the last elimination,
a zero-arity (namely, a constant) contains the result. MBE is time and
space exponential on parameter z.

2.2 Multi-Objective Minimization

Let us consider problems with p objectives. Let ~v and ~u be two
distinct p-vectors. We say that ~v dominates ~u (noted ~v < ~u) if
∀j, vj ≤ uj . A multiobjective weighted constraint satisfaction
problem (MO-WCSP) is defined as P = (X ,D, {Fj ,>j}

p
j=1

),
where X and D are variables and domains. Fj defines the j-th ob-
jective, Fj(X) =

P

f∈Fj
f(X). The multi-objective function is

F (X) = (F1(X), . . . , Fp(X))). Given a complete assignment X ,

we say that F (X) is consistent iff ∀j, Fj(X) < >j . A solution is a
consistent complete assignment. A solution X is efficient or Pareto
optimal if there is no better solution (i.e., ∀X ′, F (X ′) 6< F (X)).
XE is the set of efficient solutions and EF is the corresponding ef-
ficient frontier. The task in a MO-WCSP is to compute EF (and,
possibly, one or all efficient solutions for each of its elements).

Multi-objective MBE (MO-MBE) [10] extends MBE to the multi-
objective context. Let ~> = (>1, . . . ,>p). The sum of p-vectors is
defined as,

~v + ~u =



~> ∃j, vj ⊕ uj = >j

(v1 ⊕ u1, . . . , vp ⊕ up) otherwise.

The non-domination closure of a set of p-vectors S is defined as
〈 S 〉 = {v ∈ S |∀u ∈ S, u 6< v}. MO-MBE works with p-
functions which, instead of scalar costs, return sets of non-dominated
p-vectors. For that purpose, original cost functions f ∈ Fj need to
be reformulated from f(t) = u to f(t) = {(0, . . . , 0, u, 0, . . . , 0)}
(where the u component is at the j-th position). Operations on func-
tions are accordingly extended,

• Let f and g be p-functions. Their sum h = f + g is defined as,

h(t) = 〈 {~v| t = t′ · t′′, ~v = ~v′ +~v′′, ~v′ ∈ f(t′), ~v′′ ∈ g(t′′)} 〉

• Eliminating of xi from a p-function f , h = f ↓ xi, is defined as,

h(t) = 〈 {~v | ∀a ∈ Di, ~v ∈ f(t · (xi ← a))} 〉

Note that, if p = 1, these definitions reduce to the classical ones.
Consider as an example the 2-functions f and g in Figure 2 with

~> = (15, 18) under domains {a, b}. The sum f + g is a 2-function
(f + g)(x1, x2, x3). Note that in (f + g)(a, b, a), the sum of the
2-vectors (4, 10) and (11, 1) is ~>. As ~> is dominated by (10, 12),
it has been removed. The elimination of variable x3 from f + g is a
2-function (f + g) ↓ x3(x1, x2). Note that in (f + g) ↓ x3(a, a),
the 2-vector (4, 9) has been removed as a consequence of the non-
domination closure. Moreover, ~> has also been removed from (f +
g) ↓ x3(a, b) for the same reason.

The code of MO-MBE is the same as MBE in Figure 1. The only
difference is that costs are now p-vectors, and cost functions are now
p-functions. Given a MO-WCSP, MO-MBE returns a set S of non-
dominated p-vectors which forms a lower bound set of its efficient
frontier EF (namely, ∀~v ∈ EF , ∃~v′ ∈ S such that either v = v′ or
v′ < v). If MO-MBE returns ~>, the MO-WCSP does not have any
solution. The time complexity of MO-MBE is O(e×

Qp−1

j=1
>2

j×dz),
where e is the number of p-functions and d is the largest domain size.

3 Propagating Additive Constraints using
Multi-Objective Techniques

Let P = (X ,D,R) be a CSP such that its set of constraints can
be divided into two sets: H is a set of arbitrary hard constraints,
and {(Fj ,>j)}

p
j=1

are p additive bounding constraints. The prob-
lem is solved with a usual systematic search procedure. Consider an
arbitrary search state with its associated partial assignment, which
can be seen as if some of the domains have become singletons. Let
P ′ = (X ,D′,R) be the associated subproblem. At this point, stan-
dard solvers would propagate the current assignment using general
or specific algorithms for each type of constraint. Since we consider
MBE as the propagation algorithm of bounding constraints and it
does not prune unfeasible values, it makes sense to propagate in two



f : x1 x2

a a {(3, 2), (2, 8)}
a b {(4, 10)}
b a {~>}
b b {~>}

g: x2 x3

a a {(1, 2)}
a b {(2, 1)}
b a {(6, 2), (11, 1)}
b b {~>}

f + g: x1 x2 x3

a a a {(4, 4), (3, 10)}
a a b {(5, 3), (4, 9)}
a b a {(10, 12)}
a b b {~>}
b a a {~>}
b a b {~>}
b b a {~>}
b b b {~>}

(f + g) ↓ x3: x1 x2

a a {(4, 4), (3, 10), (5, 3)}
a b {(10, 12)}
b a {~>}
b b {~>}

Figure 2. Sum and projection over 2-functions. ~> = (15, 18).

steps: first the setH, and second a sequence of MBE executions, one
for each bounding constraint. The practical effectiveness of MBE can
be greatly improved if eachFj is augmented with the set of hard con-
straintsH,

Fj(X) =
X

f∈Fj∪H

f(X) < >j

For this purpose, boolean functions c ∈ Hmust be redefined in terms
of costs (namely, c(t) ∈ {>j , 0}). Formally, we can see the propa-
gation process as,

Propagate(H) ∧

p
^

j=1

(MBE(z,Fj ∪H,>j) < >j)

If the previous expression returns false the search procedure should
backtrack.

We propose the use of multi-objective mini-buckets instead of
mono-objective mini-buckets. It requires the replacement of the se-
quence of calls to MBE by a single call to MO-MBE,

Propagate(H) ∧ (MO-MBE(z, {(Fj ∪H,>j)}
p
j=1

) < ~>)

The previous change may seem a minor modification. However, the
subjacent algorithm is completely different and the kind of inference
performed is much more powerful, as can be seen in the following
example.

Consider a CSP P = (X ,D,R) with three 0/1 variables
and two bounding constraints: (F1, 12) with F1 = {f1(x1) =
10x1, f2(x2) = 10x2, f3(x3) = 2x3}, and (F2, 10) with F2 =
{h1(x1) = 3(1− x1), h2(x2) = 4(1− x2), h3(x3) = 8(1− x3)}.
There are two additional constraints x1 6= x2 and x2∨x3. If we prop-
agate with MBE(z = 2) each bounding constraint (augmented with
hard constraints) we obtain lower bounds 10 and 3, respectively. Find
below the trace of each execution (note that in this example, there is
no need to break buckets into mini-buckets),

1st bounding constr.

8

<

:

domain value g3 g2 g1()
1 0 2 10
0 2 10

2nd bounding constr.

8

<

:

domain value g3 g2 g1()
1 0 4 3
0 0 0

The propagation indicates that the problem may have solution.
Note that each lower bound is the optimum assignment of one bound-
ing constraint discarding the other, so MBE is doing a perfect es-
timation with the information that it receives. Its problem is that
it only knows part of the information. If we propagate with MO-
MBE(z = 2) the two bounding constraints simultaneously (aug-
mented with hard constraints) we obtain a lower bound set of {~>}

which indicates that the problem does not have any solution. Find
below the trace of the execution,

domain value g3 g2 g1()

1 {(2, 0), (0, 8)} {(2, 4)} {~>}
0 {(2, 0)} {(10, 8)}

The key is that in each execution of MBE, it searches for one dif-
ferent valid assignment. Each one satisfies one bounding constraint
separately, but not simultaneously. However, MO-MBE searches for
a unique assignment that satisfies both bounding constraints simulta-
neously and cannot find it.

4 Computational Experiments

We tested our propagation mechanism in two different domains:
combinatorial auctions and satellite scheduling. In both cases the
problem contains two additive bounding constraints with unary cost
functions plus a set of small arity hard constraints. We compare the
performance of four algorithms based on depth-first search. The first
is IlogSolver 6.1 with default parameters. Bounding constraints are
encoded with the IloPack global constraint. The second algorithm en-
forces FDAC [9] with each bounding constraint augmented with the
hard constraints. The third one enforces arc-consistency in the set of
hard constraints and then executes MBE (z = 2) with the bounding
constraints (namely, the first approach described in Section 3). The
fourth one is like the third, but the two calls to MBE are replaced
to one call to MO-MBE (namely, the second approach described in
Section 3). For comparison, we always report cpu time. We run all
the experiments on a Pentium IV at 3GHz with 2 GB of memory,
running Linux.

4.1 Combinatorial Auctions

Combinatorial auctions (CA) allow bidders to bid for indivisible sub-
sets of goods. In risk-conscious auctions, the bid-taker wants to con-
trol the risk of bid withdrawal following winner determination, be-
cause it may cause large losses in revenue [7]. Consider a set of goods
{1, 2, . . . , n} that go on auction. There are m bids. Bid i is defined
by the subset of requested goods Xi ⊆ {1, 2, . . . , n}, the money of-
fer bi and the probability of payment failure ri. The bid-taker must
decide which bids are to be accepted. We consider a decision version
of the problem in which the bid-taker provides two constants (P, R)
indicating that she does not want to miss more than P over the maxi-
mum possible revenue (

P

i≤m
bi) and probability of bid withdrawal

lower than R. Both constraints can be expressed as additive (the sec-
ond one requires a probabilistic independence assumption and a log-
arithmic transformation).



We have generated mono-objective CA using the PATH model of
the CATS generator [8] and randomly added payment failure proba-
bilities to the bids in the range 0.0 to 0.3. We experiment on instances
with 20 and 50 goods, varying the number of bids from 80 to 200.
For each parameter configuration, we generate samples of size 25
and set the time limit to 300 seconds. For each instance, we estab-
lished the values of (P, R) in such a way that i) the instance admits
a solution and ii) a small decrease of either one renders the problem
unsoluble. Consequently, the instances are difficult with respect the
two constraints.

Figure 3 reports the results for instances with 20 and 50 goods,
respectively. It can be observed that problems become harder as
the number of bids increases. Regarding the algorithms, it is clear
that MO-MBE propagation always outperforms the other three ap-
proaches. For instances with 20 goods, it is about 6 times faster than
its competitors. With 50 goods the gain is still larger (up to 10 times
faster).

4.2 Earth observation satellite scheduling.

An earth observation satellite, such as the Spot5 [1], orbits the earth
while taking photographs requested by different customers. It is im-
possible to fulfill all the requests. Thus, the problem is to select the
subset that the satellite will actually take and decide which camera
will be used for each one. We experiment with Spot5 instances that
have binary and ternary hard constraints and variables with domains
of size 2 and 4. We consider instances with 2 bounding constraints.
The first one comes from the on-board storage limit. The second one
comes from the importance of photographs (each photograph has an
associated penalty for not taking it). We consider the decision prob-
lem in which two constants (S, P ) are given: the available on-board
memory has size S and cannot be surpassed, and the maximum ac-
ceptable aggregated penalty is P . Since we could not solve complete
instances, we considered subinstances as follows: X≥k denotes in-
stance X where photographs whose penalty is less than k have been
eliminated.

Figure 4 reports the results for instance 1506≥1000 . Since we
observed that the behavior of other subinstances (i.e., 1401≥1000 ,
1403≥1000 , 1405≥1000 , and 1407≥1000 ) was very similar, we do not
report their results. Each plot reports results for a fixed value of P
and varying the value of S. We established a time limit of 600 sec-
onds. Note the logarithmic scale. We observed that IlogSolver always
performs very poorly and only solves instances with S ≤ 4. Thus,
we omit it from the plot.

Considering MBE and MO-MBE, we observe the following pat-
tern that is best exemplified in the P = 450000 plot (Figure 4 top
left). For high values of S, MBE is more efficient than MO-MBE.
The reason is that the memory constraint is very easy to satisfy,
which makes it practically irrelevant. MBE already captures the dif-
ficulty of the problem, which is mono-objective in nature. Thus, the
higher overhead of MO-MBE is wasted. As the value of S decreases,
the situation changes. Both bounding constraints become difficult to
satisfy simultaneously. Propagating with mono-objective MBE fails
in detecting inconsistency because it is easy to satisfy each constraint
if the other one is disregarded, but it is difficult to satisfy the two of
them simultaneously. Only the bi-objective nature of MO-MBE can
capture such difficulty. As a result, MBE cannot solve the problems,
while MO-MBE solves them in a few seconds. If S decreases even
further, the memory constraint becomes clearly unsatisfiable in con-
junction with the penalty constraint. MO-MBE propagation detects
it easily but MBE propagation does not. Only for the lowest val-

ues of S, when the constraint is unsatisfiable independently of other
constraints, MBE detects it efficiently. The algorithm that enforces
FDAC behaves similarly to MBE because it also considers the two
bounding constraints separately. However, it provides a much better
average performance.

Observing the plots in decreasing order of P , we observe that
problems become harder as the penalty bounding constraint becomes
tighter and harder to satisfy. As before, there is a range of S for which
the instances are most difficult. This difficulty peak shifts towards
the right as P decreases. For MO-MBE propagation, the range is
narrower than for MBE and FDAC, but it also fails to solve some
instances within the time limit of 600 seconds.

The P = 250000 case requires further discussion: the plot only
shows the left-hand side of the difficulty peak, where the tight mem-
ory constraint helps MO-MBE to prove unsatisfiability almost in-
stantly whilst MBE and FDAC cannot. For large values of S the con-
straint becomes trivial and irrelevant. Then the problem difficulty is
given only by the penalty constraint and the three algorithms fail in
solving it.

5 Related Work

The idea of using the conjunction of two or more constraints dur-
ing propagation, rather than using them one-by-one, is not new. For
instance, path-consistency, path-inverse consistency and neighbor-
hood inverse consistency [4] use this idea at different levels of so-
phistication. However, all these works assume binary problems and
cannot be efficiently extended to higher arity constraints such as
bounding constraints. The work of [12] is also related to ours. How-
ever, it is restricted to problems with so-called knapsack constraints,
which are a special case of pairs of additive bounding constraints
that share unary cost functions (namely, linear constraints of the form
L ≤ AX ≤ U ). A little bit more general is the work of [11], which
applies to pairs of constraints of the form,

n
X

i=1

wixi ≤ U ∧

n
X

i=1

pixi > U

Our notion of additive bounding constraint includes these and many
other cases and allow us to take into account any number of bounding
constraints. Besides, it can be easily extended to more sophisticated
bounding constraints expressable in terms of semirings [2]. Over-
more, our algorithmic approach using multi-objective optimization
techniques is radically different.

6 Conclusions and Future Work

Additive bounding constraints,
P

f∈F
f(X) < >, are used to bound

the tolerance under certain undesirable feature in problem solutions.
The propagation in problems involving conflicting bounding con-
straints is a difficult task for standard solvers. Typically, they prop-
agate constraints one by one. When it is easy to satisfy bounding
constraints independently, but difficult to satisfy them simultane-
ously, this approach clearly fails. In this paper we have proposed a
novel approach inspired in multi-objective optimization. We prop-
agate the additive bounding constraints simultaneously with multi-
objective mini-bucket elimination MO-MBE [10]. The output is a
multi-objective lower bound set that can be used to detect the incon-
sistency of the problem. Our experiments on two domains inspired in
real-world problems show that propagation of additive bounding con-
straints using MO-MBE is clearly superior than previous approaches.
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Figure 3. Experimental results on CA for 20 and 50 goods, respectively. Risk probabilities ranging from 0.0 to 0.3. Average time on 25 instances for each
parameter configuration. Time limit 300 sec.
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Figure 4. Experimental results on 1506≥1000 spot5 instance. Time limit 600 sec. Note the logarithmic scale.

The high overhead of multi-objective propagation may render it
useless in problems with many bounding constraints. In that case, it
may be useful to detect automatically pairs of conflicting constraints
and apply MO-MBE to these pairs independently. Moreover, the ex-
periments indicated that lose bounding constraints cause overhead
but are of no use to our approach, so they should be detected and
discarded in the propagation process. The development of this idea
is part of our future work. A major drawback of MO-MBE propaga-
tion is that it cannot detect and prune unfeasible values. We want to
overcome this problem using the ideas of [5].

ACKNOWLEDGEMENTS

This research has been funded with project TIN2005-09312-C03-02.

REFERENCES
[1] E. Bensana, M. Lemaitre, and G. Verfaillie, ‘Earth observation satellite

management’, Constraints, 4(3), 293–299, (1999).
[2] S. Bistarelli, H. Fargier, U. Montanari, F. Rossi, T. Schiex, and G. Ver-

faillie, ‘Semiring-based CSPs and valued CSPs: Frameworks, proper-
ties and comparison’, Constraints, 4, 199–240, (1999).

[3] S. de Givry, F. Heras, J. Larrosa, and M. Zytnicki, ‘Existential arc con-
sistency: getting closer to full arc consistency in weighted csps’, in
Proc. of the 19th IJCAI, Edinburgh, U.K., (August 2005).

[4] R. Debruyne and C. Bessière, ‘Domain filtering consistencies’, Journal
of Artificial Intelligence Research, 14, 205–230, (2001).

[5] R. Dechter, K. Kask, and J. Larrosa, ‘A general scheme for multiple
lower bound computation in constraint optimization’, in CP-2001, pp.
346–360, (2001).

[6] R. Dechter and I. Rish, ‘Mini-buckets: A general scheme for bounded
inference’, Journal of the ACM, 50(2), 107–153, (March 2003).

[7] A. Holland, Risk Management for Combinatorial Auctions, Ph.D. dis-
sertation, Dept. of Computer Science, UCC, Ireland., 2005.

[8] M.Pearson K.Leuton-Brown and Y.Shoham, ‘Towards a universal test
suite for combinatorial auction algorithms’, ACM E-Commerce, 66–76,
(2000).

[9] J. Larrosa and T. Schiex, ‘In the quest of the best form of local consis-
tency for weighted csp’, in Proc. of the 18th IJCAI, Acapulco, Mexico,
(August 2003).

[10] E. Rollon and J. Larrosa, ‘Depth-first mini-bucket elimination’, in Proc.
of the 11th CP, pp. 563–577, Sitges (Spain), (2005). LNCS 3709.

[11] Meinolf Sellmann, ‘Approximated consistency for knapsack con-
straints’, in CP 2003, pp. 679–693. LNCS 2833. Springer Verlag.

[12] Michael Trick, ‘A dynamic programming approach for consistency
and propagation for knapsack constraints’, Annals of Op. Research,
118(118), 73–84, (2003).


