
Mini-bucket Elimination with Bucket

Propagation

Emma Rollon and Javier Larrosa

Universitat Politecnica de Catalunya,
Jordi Girona 1-3, 08034 Barcelona, Spain

erollon@lsi.upc.edu, larrosa@lsi.upc.edu

Abstract. Many important combinatorial optimization problems can
be expressed as constraint satisfaction problems with soft constraints.
When problems are too difficult to be solved exactly, approximation
methods become the best option. Mini-bucket Elimination (MBE) is a
well known approximation method for combinatorial optimization prob-
lems. It has a control parameter z that allow us to trade time and space
for accuracy. In practice, it is the space and not the time that limits
the execution with high values of z. In this paper we introduce a new
propagation phase that MBE should execute at each bucket. The pur-
pose of this propagation is to jointly process as much information as
possible. As a consequence, the undesirable lose of accuracy caused by
MBE when splitting functions into different mini-buckets is minimized.
We demonstrate our approach in scheduling, combinatorial auction and
max-clique problems, where the resulting algorithm MBEp gives impor-
tant percentage increments of the lower bound (typically 50% and up to
1566%) with only doubling the cpu time.

1 Introduction

It is well recognized that many important problems belong to the class of combi-
natorial optimization problems. In general, combinatorial optimization problems
are NP-hard. Therefore, they cannot be solved efficiently with current technolo-
gies. Then, the only thing that we can possibly do is to find near-optimal so-
lutions. In that context, it is also desirable to have a quality measure of the
solution. One way to achieve this goal is to provide a lower and an upper bound
of the optimum. The smaller the gap, the closer we are to the true optimum.

Typically, best results are obtained developing ad-hoc techniques for the in-
stances of interest. However, this requires a lot of work, including the time to
learn specific domain peculiarities. An alternative, is to used generic techniques.
Although they may not give so accurate results, it may be enough in some appli-
cations. Besides, they may provide the starting reference point to evaluate new
ad-hoc techniques.

Mini-bucket Elimination (MBE) [1] is one of the most popular bounding tech-
niques. Assuming minimization problems, MBE provides a lower bound of the

optimum and can be combined with local search which provide upper bounds 1.
MBE is very general, since it can be applied to any problem that falls into the cat-
egory of graphical models. Graphical models include very important optimization
frameworks such as soft constraint satisfaction problems [2], Max-SAT, bayesian
networks [3], etc. These frameworks have important applications in fields such
as routing [4], bioinformatics [5], scheduling [6] or probabilistic reasoning [7]. The
good performance of MBE in different contexts has been widely proved [1, 8, 7].

Interestingly, MBE has a parameter z which allow us to trade time and space
for accuracy. With current computers, it is the space and not the time what
bounds the maximum value of z that can be used in practice. In our previous
work [9], we introduced a set of improvements on the way MBE handles mem-
ory. As a result, MBE became orders of magnitude more efficient. Thus, higher
values of z can be used which, in turn, yields significantly better bounds. In this
paper we continue improving the practical applicability of MBE. In particular,
we introduce a new propagation phase that MBE must execute at each bucket.
Mini-buckets are structured into a tree and costs are moved along branches from
the leaves to the root. As a result, the root mini-bucket accumulates costs that
will be processed together, while classical MBE would have processed them inde-
pendently. Note that the new propagation phase does not increase the complexity
with respect classical MBE.

Our experiments on scheduling, combinatorial auctions and maxclique show
that the addition of this propagation phase increases the quality of the lower
bound provided by MBE quite significatively. Although the increase depends on
the benchmark, the typical percentage is 50%. However, for some instances, the
propagation phase gives a dramatic percentage increment up to 1566%.

2 Preliminaries

2.1 Soft CSP

Let X = (x1, . . . , xn) be an ordered set of variables and D = (D1, . . . , Dn) an
ordered set of domains, where Di is the finite set of potential values for xi.
The assignment (i.e, instantiation) of variable xi with a ∈ Di is noted (xi ←
a). A tuple t is an ordered set of assignments to different variables (xi1 ←
ai1 , . . . , xik

← aik
). The scope of t, noted var(t), is the set of variables that it

assigns. The arity of t is |var(t)|. The projection of t over Y ⊆ var(t), noted t[Y],
is a sub-tuple of t containing only the instantiation of variables in Y . Let t and
s be two tuples having the same instantiations to the common variables. Their
join, noted t · s, is a new tuple which contains the assignments of both t and
s. Projecting a tuple t over the empty set t[∅] produces the empty tuple λ. We
say that a tuple t is a complete instantiation when var(t) = X . In the following,
abusing notation, when we write ∀t∈Y we will mean ∀t s.t. var(t)=Y .

1 In the original description MBE also provides an upper bound, but in this paper we
will disregard this feature

Let A be an ordered set of values, called valuations, and + a conmutative and
associative binary operation + : A×A→ A such that exists an identity element
0 (namely, ∀a ∈ A, a + 0 = a), and satisfies monotonicity (namely, ∀a, b, b ∈ A,
if a ≥ b then (a + b ≥ b + c)).
F = {f1, . . . , fr} is a set of functions. Each function fj is defined over a subset

of variables var(fj) ⊆ X and returns values of A (namely, if var(t) = var(fj)
then fj(t) ∈ A). For convenience, we allow to evaluate fj(t) when var(t) ⊃
var(fj), being equivalent to fj(t[var(fj)]). In this paper we assume functions
explicitly stored as tables.

A soft CSP is a triplet (X ,D,F) where each function f ∈ F specifies how
good is each different partial assignment of var(f). The sum + is used to ag-

gregate values from different functions. The global quality of an assignment is
the sum of values given by all the functions. The usual task of interest is to find
the best complete assignment X in terms of A. Different soft CSP frameworks
differ in the semantics of A. Well-known frameworks include probabilistic CSPs,
weighted CSPs, fuzzy CSPs, etc [2].

A soft CSP framework is fair [10] if for any pair of valuations α, β ∈ A, with
α ≤ β, there exists a maximum difference of β and α. This unique maximum
difference of β and α is denoted by β−α. This property ensures the equivalence
of the problem when the two operations + and − are applied. In [10] it is
shown that the most important soft constraint frameworks are fair. Although
our approach can be used in any fair soft constraint framework, for the sake of
simplicity, we will focus on weighted CSPs. In weighted CSPs (WCSPs) A is the
set of natural numbers, + and − are the usual sum and subtraction. Thus, the
set of soft constraints define the following objective function to be minimized,

F (X) =

r∑

i=1

fi(X)

2.2 Operations over Functions

– The sum of two functions f and g denoted (f + g) is a new function with
scope var(f) ∪ var(g) which returns for each tuple t ∈ var(f) ∪ var(g) the
sum of costs of f and g,

(f + g)(t) = f(t) + g(t)

– Let f and g be two functions such that var(g) ⊆ var(f) and ∀t ∈ var(f), f(t) ≥
g(t). Their subtraction, noted f − g is a new function with scope var(f) de-
fined as,

(f − g)(t) = f(t)− g(t)

for all tuple t ∈ var(f).
– The elimination of variable xi from f , denoted f ↓ xi, is a new function

with scope var(f) − {xi} which returns for each tuple t the minimum cost
extension of t to xi,

function BE(X ,D,F)
1. for each i = n..1 do
2. B := {f ∈ F | xi ∈ var(f)}
3. g := (

∑
f∈B

f) ↓ xi;

4. F := (F ∪ {g}) − B;
5. endfor
6. return(F);
endfunction

Fig. 1. Bucket Elimination. Given a WCSP (X ,D,F), the algorithm returns F con-
taining a constant function with the optimal cost.

(f ↓ xi)(t) = min
a∈Di

{f(t · (xi ← a))}

where t · (xi ← a) means the extension of t so as to include the assignment of
a to xi. Observe that when f is a unary function (i.e., arity one), eliminating
the only variable in its scope produces a constant.

– The projection of function f over Y ⊂ var(f), denoted f [Y], is a new function
with scope Y which returns for each tuple t the minimum cost extension of
t to var(f),

(f [Y])(t) = min
t′∈var(f) s.t. t′=t·t′′

f(t′)

Observe that variable elimination and projection are related with the follow-
ing property,

(f ↓ xi) = f [var(f)− {xi}]

2.3 Bucket and Mini-Bucket Elimination

Bucket elimination (BE, Figure 1)[11, 12] is a well-known algorithm for weighted
CSPs. It uses an arbitrary variable ordering o that we assume, without loss of
generality, lexicographical (i.e, o = (x1, x2, . . . , xn)). The algorithm eliminates
variables one by one, from last to first, according to o. The elimination of variable
xi is done as follows: F is the set of current functions. The algorithm computes
the so called bucket of xi, noted B, which contains all cost functions in F having
xi in their scope (line 2). Next, BE computes a new function g by summing
all functions in B and subsequently eliminating xi (line 3). Then, F is updated
by removing the functions in B and adding g (line 4). The new F does not
contain xi (all functions mentioning xi were removed) but preserves the value of
the optimal cost. The elimination of the last variable produces an empty-scope
function (i.e., a constant) which is the optimal cost of the problem. The time and
space complexity of BE is exponential in a structural parameter called induced

width. In practice, it is the space and not the time what makes the algorithm
unfeasible in many instances.

Mini-bucket elimination (MBE) [1] is an approximation of BE that can be
used to bound the optimum when the problem is too difficult to be solved exactly.
Given a control parameter z, MBE partitions buckets into smaller subsets called
mini-buckets such that their join arity is bounded by z + 1. Each mini-bucket
is processed independently. Consequently, the output of MBE is a lower bound
of the true optimum. The pseudo-code of MBE is the result of replacing lines 3
and 4 in the algorithm of Figure 1 by,

3. {P1, . . . ,Pk} := Partition(B);
3b. for each j = 1..k do gj := (

∑
f∈Pj

f) ↓ xi;

4. F := (F ∪ {g1, . . . , gk})− B;

The time and space complexity of MBE is O(dz+1) and O(dz), respectively.
Parameter z allow us to trade time and space for accuracy, because greater values
of z increment the number of functions that can be included in each mini-bucket.
Therefore, the bounds will be presumably tighter. MBE constitutes a powerful
yet extremely general mechanism for lower bound computation.

3 Equivalence-preserving transformations in fair

frameworks

We say that two WCSPs are equivalent if they have the same optimum. There
are several transformations that preserve the equivalence. For instance, if we take
any pair of cost functions f, g ∈ F from a WCSP (X ,D,F) and replace them
by their sum f + g, the result is an equivalent problem. The replacement of B
by g performed by BE (Figure 1) is another example of equivalence-preserving
transformation. Very recently, a new kind of WCSP transformation has been
used in the context of soft local consistency [13, 14]. The general idea is to move

costs from one cost function to another. More precisely, costs are subtracted from
one cost function and added to another. Formally, let f and h be two arbitrary
functions. The movement of costs from f to g is done sequentially in three steps:

h := f [var(f) ∩ var(g)]
f := f − h
g := g + h

In words, function h contains costs in f that can be captured in terms of the
common variables with g. Hence, they can be kept either in h or in f . Then,
this costs are moved from f to g. The time complexity of this operation is
O(dmax{|var(f)|,|var(g)|}). The space complexity is the size of h stored as a table,
O(d|var(h)|}), which is negligible in comparison with the larger function f .

Example 1. Consider the functions on Figure 2 (a). They are defined over boolean
domains and given as a table of costs. Let function h represents the costs that

x f:g: x xiix

5ff
f t
t f

tt t t
t f
f
f

t
f

4
1
6 5

2
3
4

j k

(a)

0

kxix

ff
f t

t t
ft

7
6
5

jxix

ff
tf
ft
tt

(b)

10

1
0
1

g: f:

x f xj

f
t
f 2

g i

t
1

4

x i

3

k

(c)

x kx

f
t

5

jx

f
t

x i x i

6

0
1

(d)

g f

Fig. 2. Example of functions.

can be moved from function f to function g. Observe that, as f and g only share
variable xi, then h = f [xi], where h(false) = 2 and h(true) = 4. Figure 2 (b),
shows the result of moving the costs from f to g. Observe that costs of tuples t
such that var(t) = {xi, xj , xk} are preserved.

4 Mini Buckets with Propagation

In this Section we introduce a refinement of MBE. It consists on performing a
movement of costs in each bucket before processing it. We incorporate the con-
cept of equivalence-preserving transformation into MBE, but only at the bucket
level. The idea is to move costs between minibuckets aiming at a propagation
effect. We pursue the accumulation of as much information as possible in one of
the mini-buckets.

The following example illustrates and motivates the idea. Suppose that MBE
is processing a bucket containing two functions f and g, each one forming a mini-
bucket. Variable xi is the one to be eliminated. Standard MBE would process
independently each minibucket, eliminating variable xi in each function. It is
precisely this independent elimination of xi from each mini-bucket where the
lower bound of MBE may lose accuracy. Ideally (i.e, in BE), f and g should be
added and their information should travel together along the different buckets.
However, in MBE their information is split into two pieces for complexity reasons.
What we propose is to transfer costs from f to g (or conversely) before processing
the mini-buckets. The purpose is to put as much information as possible in the
same mini-bucket, so that all this information is jointly processed as BE would
do. Consequently, the pernicious effect of splitting the bucket into mini-buckets
will presumably be minimized. Figure 2 depicts a numerical illustration. Consider
functions f and g from Figure 2 (a). If variable xi is eliminated independently, we
obtain the functions in Figure 2 (c). If the problem contains no more functions,

function MBEp(z)
1. for each i = n..1 do
2. B := {f ∈ F | xi ∈ var(f)};
3. {P1, . . . ,Pk} := Partition(B, z);
4. for each j = 1..k do gj :=

∑
f∈Pj

f ;

5. (V, E) := PropTree({g1, . . . , gk});
6. Propagation((V, E));
7. for each j = 1..k do gj := gj ↓ xi;
8. F := (F ∪ {g1, . . . , gk}) −B;
9. endfor
10. return(g1);
endfunction
procedure Propagation((V, E))
11. repeat
12. select a node j s.t it has received the messages from all its children;
13. hj := gj [var(gj) ∩ var(gparent(j))];
14. gj := gj − hj ;
15. gparent(j) := gparent(j) + hj ;
16. until root has received all messages from its children;
endprocedure

Fig. 3. Mini-Bucket Elimination with Propagation (preliminary version). Given a
WCSP (X ,D,F), the algorithm returns a zero-arity function g1 with a lower bound of
the optimum cost.

the final lower bound will be 3. Consider now the functions in Figure 2 (b) where
costs have been moved from f to g. If variable xi is eliminated independently,
we obtain the functions in Figure 2 (d), with which the lower bound is 5.

The previous example was limited to two mini-buckets containing one func-
tion each. Nevertheless, the idea can be easily generalized to arbitrary mini-
bucket arrangements. At each bucket B, we construct a propagation tree T =
(V, E) where nodes are associated with mini-buckets and edges represent move-
ment of costs along branches from the leaves to the root. Each node waits until
receiving costs from all its children. Then, it sends costs to its parent. This flow
of costs accumulates and propagates costs towards the root.

The refinement of MBE that incorporates this idea is called MBEp. In Figure
3 we describe a preliminary version. A more efficient version regarding space will
be discussed in the next subsection. MBEp and MBE are very similar and, in
the following, we discuss the main differences. After partitioning the bucket into
mini-buckets (line 3), MBEp computes the sum of all the functions in each mini-
bucket (line 4). Next, it constructs a propagation tree T = (V, E) with one node
j associated to each function gj . Then, costs are propagated (lines 6, 11-16).
Finally, variable xi is eliminated from each mini-bucket (line 7) and resulting
functions are added to the problem in replacement of the bucket (line 8).

Procedure Propagation is also depicted in Figure 3. Let j be an arbitrary
node of the propagation tree such that has received costs from all its children.
It must send costs to its parent parent(j). First, it computes in function hj

the costs that can be sent from j to its parent (line 13). Then, function hj is
subtracted from gj and summed to gparent(j) (lines 14 and 15). The propagation
phase terminates when the root receives costs from all its children.

4.1 Improving the Space complexity

Observe that the previous implementation of MBEp (Figure 3) computes in
two steps (lines 4 and 7), what plain MBE computes in one step. Consequently,
MBEp stores functions with arity up to z + 1 while MBE only stores functions
with arity up to z. Therefore, the previous description of MBEp has a space
complexity slightly higher than MBE, given the same value of z. In the following,
we show how the complexity of MBEp can be made similar to the complexity
of MBE. First, we extend the concept of movement of costs to deal with sets of
functions. Let F and G be two sets of costs functions. Let var(F) = ∪f∈F var(f),
var(G) = ∪g∈Gvar(g) and Y = var(F) ∩ var(G). The movement of costs from
F to G is done sequentially in three steps:

h := (
∑

f∈F f)[Y]

F := F ∪ {−h}
G := G ∪ {h}

where −h means that costs contained in h are to be subtracted instead of
summed, when evaluating costs of tuples on F . Observe that the first step can
be efficiently implemented as,
∀t∈Y , h(t) := min(t′∈var(F) s.t. t′=t·t′′){

∑
f∈F f(t′)}

This implementation avoids computing the sum of all the functions in F . The
time complexity of the operation is O(d|var(F)|). The space complexity is O(d|Y |).

Figure 4 depicts the new version of MBEp. The difference with the previ-
ous version is that functions in mini-buckets do not need to be summed before
the propagation phase (line 4 is omitted). Procedure Propagation moves costs
between mini-buckets preserving the set of original functions. Line 7, sums the
functions in the mini-buckets and eliminates variable xi in one step, as plain
MBE would do.

Observe that the time complexity of line 13 is O(dz+1), because |var(Pj)| ≤
z + 1 (by definition of mini-bucket). The space complexity is O(dz) because
|var(h)| ≤ z (note that var(Pj) 6= var(Pparent(j)) because otherwise they would
have been merged into one mini-bucket). The previous observation leads to the
following result.

Theorem 1. The time and space complexity of MBEp is O(dz+1) and O(dz),
respectively, where d is the largest domain size and z is the value of the control

parameter.

function MBEp(z)
1. for each i = n..1 do
2. B := {f ∈ F | xi ∈ var(f)};
3. {P1, . . . ,Pk} := Partition(B, z);
5. (V, E) := PropTree({P1, . . . ,Pk});
6. Propagation((V, E));
7. for each j = 1..k do gj := ((

∑
f∈Pj

f) − hj) ↓ xi;

8. F := (F ∪ {g1, . . . , gk}) −B;
9. endfor
10. return(g1);
endfunction
procedure Propagation((V, E))
11. repeat
12. select a node j s.t it has received the messages from all its children;
13. hj := (

∑
f∈Pj

f)[var(Pj) ∩ var(Pparent(j))];

14. Pj := Pj ∪ {−hj};
15. Pparent(j) := Pparent(j) ∪ {hj};
16. until root has received all messages from its children;
endprocedure

Fig. 4. Mini-Bucket Elimination with Propagation. Given a WCSP (X ,D,F), the al-
gorithm returns a zero-arity function g1 with a lower bound of the optimum cost.

4.2 Computation of the Propagation Tree

In our preliminary experiments we observed that the success of the propagation
phase of MBEp greatly depends on the flow of information, which is captured in
the propagation tree. In the following we discuss two ideas that heuristically lead
to good propagation trees. Then, we will propose a simple method to construct
good propagation trees.

For the first observation, consider MBE with z = 1 in a problem with four
binary functions f1(x1, x2), f2(x2, x3), f3(x2, x4), f4(x3, x4). Variable x4 is the
first to be eliminated. Its bucket contains f3 and f4. Each function forms a mini-
bucket. MBEp must decide whether to move costs from f3 to f4 or conversely.
Observe that after the elimination of x4, f4 will go to the bucket of x3 where it
will be summed with f2. Then, they will go to the bucket of x2. However, f3 will
jump directly to the bucket of x2. For this reason, it seems more appropriate
to move costs from f3 to f4. In f4 the costs go to a higher mini-bucket, so
they have more chances to propagate useful information. One way to formalize
this observation is the following: We associate to each mini-bucket Pj a binary
number Nj = bnbn−1 . . . b1 where bi = 1 iff xi ∈ Pj . We say that mini-bucket
Pj is smaller than Pk (noted Pj < Pk) if Nj < Nk. In our propagation trees
parents will always be larger than their children.

For the second observation, consider three functions f(x7, x6, x5, x4), g(x7, x3, x2, x1),
h(x7, x6, x5, x1). Observe that f shares 1 variable with g and 3 with h. The num-

ber of common variables determines the arity of the function that is used as a
bridge in the cost transfer. The narrower the bridge, the less information that
can be captured. Therefore, it seems better to move costs between f and h than
between f and g.

In accordance with the two previous observations, we construct the propaga-
tion tree as follows: the parent of mini-bucket Pu will be mini-bucket Pw such
that Pu < Pw and they share a maximum number of variables. This strategy
combines the two criteria discussed above.

5 Experimental Results

We have tested our approach in three different domains. The purpose of the
experiments is to evaluate the effectiveness of the propagation phase and the
impact of the propagation tree on that propagation. To that end, we compare
the lower bound obtained with three algorithms: standard MBE, MBE with
bucket propagation using as a propagation tree a chain of mini-buckets randomly
ordered (i.e., MBEp

r), and MBE with bucket propagation using a propagation
tree heuristically built as explained in Section 4.2 (i.e., MBEp

h). For each domain,
we execute those three algorithms with different values of the control parameter
z in order to analyze its effect (the highest value of z reported is the highest
feasible value given the available memory). In all our experiments, the order of
variable elimination is established with the min-fill heuristic. All the experiments
are executed in a Pentium IV running Linux with 2Gb of memory and 3 GHz.

5.1 Scheduling

For our first experiment, we consider the scheduling of an earth observation
satellite. We experiment with instances from Spot5 satellite [15]. These instances
have unary, binary and ternary cost functions, and domains of size 2 and 4. Some
instances include in their original formulation an additional capacity constraint
that we discard on this benchmark.

Figure 5 shows the results. The first column identifies the instance. The sec-
ond column indicates the value of the control parameter z with which the algo-
rithms are executed. Columns third and fourth report the lower bound obtained
and the execution time for standard MBE, respectively. Columns fifth and sixth
indicates for MBEp

r the percentage increment of the lower bound measured as
((LbMBE

p
r
− LbMBE)/LbMBE) ∗ 100 and the execution time. Columns seventh

and eighth reports the same information for MBEp
h.

The first thing to be observed is that the results obtained with MBEp
r does

not follow a clear tendency. MBEp
r increases and decreases the lower bound

obtained with standard MBE almost the same times. However, MBEp
h increases

the lower bound obtained with MBE for all the instances. Moreover, when both
MBEp

r and MBEp
h increase the lower bound, MBEp

h is always clearly superior.
Therefore, it is clear that an adequate propagation tree impacts on the bounds
obtained.

Instance z MBE(z) MBEp
r (z) MBE

p

h
(z)

Lb. Time(sec.) % Time(sec.) % Time(sec.)
20 184247 827.63 1.6 1628.93 29.8 1706.6

1506 15 163301 25.43 -5.5 51.48 30.6 51.39
10 153274 1.33 -13.7 2.65 21.5 2.64
20 184084 691.08 16.8 1469.36 58.6 1574.26

1401 15 170082 20.82 4.7 47.35 45.8 46.92
10 155075 1.02 -10.3 2.13 53.5 2.17
20 181184 814.55 7.1 1702.82 59.6 1919.48

1403 15 162170 27.82 7.3 55.94 57.3 56.9
10 146155 1.3 10.9 2.58 60.2 2.6
20 191258 1197.06 0.5 2537.64 42.3 2622.88

1405 15 169233 33.88 -2.3 93.88 54.9 81.17
10 142206 1.7 -25.3 3.51 64.7 3.5
20 191342 1415.91 -4.0 2935.78 53.8 3008.78

1407 15 166298 47.44 3.5 94.17 60.1 102.78
10 144264 2.03 13.8 4.19 68.6 4.23
20 134105 252.14 2.2 500.97 38.0 510.72

28 15 121105 7.77 -1.6 15 52.8 16.16
10 103105 0.36 16.4 0.71 49.4 0.71
20 8058 4.92 -0.01 5.3 0.01 5.32

29 15 8055 0.28 -0.1 0.34 0.02 0.34
10 8050 0.01 -0.01 0.02 0.07 0.02
20 5212 51.19 19.1 75.39 19.3 72.5

408 15 5200 2.11 18.7 3.29 19.3 3.41
10 2166 0.11 38.1 0.2 139.0 0.2
20 17314 167.91 5.4 278.29 40.5 278.7

412 15 15270 6.49 6.2 10.98 72.1 11.1
10 10233 0.27 87.8 0.5 88.4 0.78
20 23292 629.36 -12.9 1278.39 17.4 1306.98

414 15 18268 20.14 -16.3 42.87 49.4 42.99
10 16213 1.05 -31.0 2.35 49.8 2.09
20 127050 38.9 -4.7 71.47 7.8 68.35

42 15 111050 1.43 -1.8 2.52 14.4 2.55
10 93050 0.06 2.1 0.12 19.3 0.12
20 19240 51.36 -36.3 66.9 5.2 63.16

505 15 16208 2.2 -18.5 3.35 0.1 3.23
10 13194 0.15 -15.2 0.21 15.1 0.21
20 16292 276.74 -6.1 510.66 0.2 520.3

507 15 14270 9.84 6.7 19.01 42.2 18.88
10 11226 0.47 8.6 0.92 53.7 0.92
20 22281 507.64 4.6 1026.43 22.5 1046.89

509 15 20267 16.2 -24.6 34.68 34.7 34.72
10 14219 0.83 14.0 1.64 77.7 1.62

Fig. 5. Experimental results on Spot5 instances.

Regarding MBEp
h, it increases up to 139% the lower bound with respect

MBE (e.g. instance 408). The mean increment is 54%, 38%, and 28% when the
value of the control parameter z is 10, 15, and 20, respectively. Note that the
effect of the propagation is higher for lower values of z because, as we increase
the value of z, the number of functions in each mini-bucket increases and the
number of mini-buckets decreases. Therefore, the propagated information also
decreases and the effect of the propagation is diminished. Moreover, the lower
bounds obtained with MBEp

h and z set to 10 outperforms the ones obtained
with MBE and z set to 20 in almost all the instances, which means that the
time and space required for obtaining a bound of a given quality is decreased.

Regarding cpu time, MBEp
h is from 2 to 3 times slower than MBE. The reason

is that cost functions are evaluated twice: the first one during the propagation

400

500

600

700

800

900

1000

1100

1200

1300

80 100 120 140 160 180 200

lb
.

nb. bids

Path Combinatorial Auctions with 20 goods.

mbe^p_h(20)
mbe^p_h(15)

mbe(20)
mbe(15)

400

500

600

700

800

900

1000

1100

1200

80 100 120 140 160 180 200

lb
.

nb. bids

Path Combinatorial Auctions with 50 goods.

mbe^p_h(20)
mbe^p_h(15)

mbe(20)
mbe(15)

Fig. 6. Combinatorial Auctions. Path distribution.

phase for establishing the costs to be moved, and the second one during the
regular process of variable elimination. However, it is important to note that it
is the space and not the time what bounds the maximum value of z that can
be used in practice. As a consequence, that constant increase in time is not that
significant as the space complexity remains the same.

5.2 Combinatorial Auctions

Combinatorial auctions (CA) allow bidders to bid for indivisible subsets of goods.
Consider a set of goods {1, 2, . . . , n} that go on auction. There are m bids. Bid
j is defined by the subset of requested goods Xj ⊆ {1, 2, . . . , n} and the money
offer bj . The bid-taker must decide which bids are to be accepted maximizing
the benefits.

We have generated CA using the path and regions model of the CATS gener-
ator [16]. We experiment on instances with 20 and 50 goods, varying the number
of bids from 80 to 200. For each parameter configuration, we generate samples
of size 10. We execute algorithms MBE, MBEp

r , and MBEp
h with z equal to 15

and 20. We do not report results with MBEp
r because it was always very inferior

than MBEp
h. For space reasons, we only report results on the path model. The

results for the regions model follows the same pattern.

Figure 6 reports the results for path instances with 20 and 50 goods, respec-
tively. As can be observed, the behaviour for both configurations is almost the
same. Regarding the algorithms, it is clear that MBEp

h always outperformes
MBE. Note that the lower bound obtained with MBEp

h(z = 15) is clearly su-
perior than that obtained with MBE(z = 20). Moreover, as pointed out in the
previous domain, the effect of the propagation in each sample point is higher for
z = 15 than for z = 20. That is, the percentage of increment in the lower bound
obtained with MBEp

h(z = 15) is higher than that of MBEp
h(z = 20). Finally,

it is important to note that the impact of the propagation is higher when the
problems become harder (i.e., as the number of bids increase).

5.3 Maxclique

A clique of a graph G = (V, E) is a set S ⊆ V , such that every two nodes in
S are joined by an edge of E. The maximum clique problem consists on finding
the largest cardinality of a clique. The maximum clique problem can be easily
encoded as a minimization problem (i.e., minimize the number of nodes in V −S).

We test our approach on the dimacs benchmark [17]. Figure 7 reports the
results. The first column identifies the instance. The second column indicates the
value of the control parameter z with which the algorithms are executed. The
third column report the lower bound obtained with standard MBE. Columns
fourth and fifth indicates, for MBEp

r and MBEp
l , the percentage of increment

in the lower bound with respect MBE, respectively. As the behaviour of the
cpu time is the same as for the previous benchmark, we do not report this
information.

MBEp
r increases the lower bound obtained with standard MBE for all the

instances except for those of hamming and johnson. The percentage of increment
is up to 1226% when the value of the control parameter z is 10, and up to 812%
when z is the highest value. The best results are obtained with MBEp

h which
obtains a percentage increment of 1566% (see instance p-hat1500-2). In this case,
the increase ranges from 14.6% to 1566% when z is set to 10, and from 17.6%
to 1292% for the highest value of z.

It is important to note that the bound obtained with MBEp
h is always higher

than that of MBEp
r . For some instances, the percentage of increment of MBEp

h

is more than 4 times higher the one obtained with MBEp
r (e.g. instance c-

fat200-1). Therefore, it is clear that an adequate propagation tree impacts on
the propagation phase and, as a consequence, on the bounds obtained.

6 Conclusions and Future Work

Mini-bucket elimination (MBE) is a well-known approximation algorithm for
combinatorial optimization problems. It has a control parameter z which allow
us to trace time and space for approximation accuracy. In practice, it is usually
the space rather than the cpu time which limits the control parameter.

In this paper we introduce a new propagation phase that MBE should exe-
cute at each bucket. In the new algorithm, that we call MBEp, the idea is to
move costs along mini-buckets in order to accumulate as much information as
possible in one of them. The propagation phase is based on a propagation tree

where each node is a mini-bucket and edges represent movements of costs along
branches from the leaves to the root. Finally, it is important to note that the
propagation phase does not increase the asymptotical time and space complexity
of the original MBE algorithm.

We demonstrate the effectiveness of our algorithm in scheduling, combinato-

rial auction and maxclique problems. The typical percentage of increment in the
lower bound obtained is 50%. However, for almost all maxclique instances the
percentage of increment ranges from 250% to a maximum of 1566%. Therefore,

MBEp is able to obtain much more accurate lower bounds than standard MBE
using the same amount of resources.

In our future work we want to integrate the propagation phase into the
depth-first mini-bucket elimination algorithm [9]. The two main issues are how
the computation tree rearrangements affect the bucket propagation and how to
efficiently deal with the functions maintaining the transferred costs.

Acknowledgement

This research has been funded with project TIN2005-09312-C03-02.

References

1. Dechter, R., Rish, I.: Mini-buckets: A general scheme for bounded inference. Jour-
nal of the ACM 50 (2003) 107–153

2. Bistarelli, S., Fargier, H., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G.:
Semiring-based CSPs and valued CSPs: Frameworks, properties and comparison.
Constraints 4 (1999) 199–240

3. Pearl, J.: Probabilistic Inference in Intelligent Systems. Networks of Plausible
Inference. Morgan Kaufmann, San Mateo, CA (1988)

4. H. Xu, R.R., Sakallah, K.: sub-sat: A formulation for relaxed boolean satisfiability
with applications in rounting. In: Proc. Int. Symp. on Physical Design, CA (2002)

5. D.M. Strickland, E.B., Sokol, J.: Optimal protein structure alignment using max-
imum cliques. Operations Research 53 (2005) 389–402

6. Vasquez, M., Hao, J.: A logic-constrained knapsack formulation and a tabu algo-
rithm for the daily photograph scheduling of an earth observation satellite. Journal
of Computational Optimization and Applications 20(2) (2001)

7. Park, J.D.: Using weighted max-sat engines to solve mpe. In: Proc. of the 18th

AAAI, Edmonton, Alberta, Canada (2002) 682–687
8. Kask, K., Dechter, R.: A general scheme for automatic generation of search heuris-

tics from specification dependencies. Artificial Intelligence 129 (2001) 91–131
9. Rollon, E., Larrosa, J.: Depth-first mini-bucket elimination. In: Proc. of the 11th

CP, Sitges (Spain), LNCS 3709. Springer-Verlag. (2005) 563–577
10. Cooper, M., Schiex, T.: Arc consistency for soft constraints. Artificial Intelligence

154 (2004) 199–227
11. Dechter, R.: Bucket elimination: A unifying framework for reasoning. Artificial

Intelligence 113 (1999) 41–85
12. Bertele, U., Brioschi, F.: Nonserial Dynamic Programming. Academic Press (1972)
13. Larrosa, J., Schiex, T.: Solving weighted csp by maintaining arc-consistency. Ar-

tificial Intelligence 159 (2004) 1–26
14. Cooper, M.: High-order consistency in valued constraint satisfaction. Constraints

10 (2005) 283–305
15. Bensana, E., Lemaitre, M., Verfaillie, G.: Earth observation satellite management.

Constraints 4(3) (1999) 293–299
16. K.Leuton-Brown, M., Y.Shoham: Towards a universal test suite for combinatorial

auction algorithms. ACM E-Commerce (2000) 66–76
17. Johnson, D.S., Trick, M.: Second dimacs implementation challenge: cliques, col-

oring and satisfiability. DIMACS Series in Discrete Mathematics and Theoretical
Computer Science. AMS 26 (1996)

Instance z MBE MBEp
r MBE

p

h

Lb. % %
brock200-1 18 66 30.3 48.4

10 51 52.9 78.4
brock200-2 18 55 67.2 103.6

10 29 200 268.9
brock200-3 18 64 48.4 68.7

10 38 139.4 173.6
brock200-4 18 63 36.5 65.0

10 41 121.9 131.7
brock400-1 18 79 100 141.7

10 46 256.5 273.9
brock400-2 18 75 114.6 157.3

10 44 261.3 277.2
brock400-3 18 87 88.5 114.9

10 44 250 286.3
brock400-4 18 76 106.5 160.5

10 47 248.9 289.3
brock800-1 18 71 336.6 454.9

10 41 675.6 773.1
brock800-2 18 63 395.2 520.6

10 37 748.6 875.6
brock800-3 18 68 352.9 483.8

10 44 604.5 706.8
brock800-4 18 71 343.6 460.5

10 36 758.3 902.7
c-fat200-1 18 71 32.3 78.8

10 62 27.4 112.9
c-fat200-2 18 63 38.0 82.5

10 48 77.0 156.2
c-fat200-5 18 55 23.6 12.7

10 37 32.4 70.2
c-fat500-10 18 77 115.5 123.3

10 52 173.0 253.8
c-fat500-1 18 132 84.0 137.1

10 107 126.1 196.2
c-fat500-2 18 108 108.3 164.8

10 85 160 254.1
c-fat500-5 18 83 145.7 202.4

10 74 163.5 264.8
hamming10-2 18 412 -66.9 -72.0

10 419 -72.0 -73.7
hamming10-4 18 119 264.7 413.4

10 77 451.9 720.7
hamming6-2 18 32 -28.1 -31.2

10 32 -50 -59.3
hamming6-4 18 45 -4.4 2.2

10 33 9.0 33.3
hamming8-2 18 114 -59.6 -64.9

10 113 -74.3 -78.7
hamming8-4 18 82 46.3 89.0

10 51 113.7 215.6
johnson16-2-4 18 72 -4.1 11.1

10 56 10.7 48.2
johnson32-2-4 18 195 27.6 71.2

10 134 75.3 150
johnson8-2-4 18 23 -4.3 0

10 20 -20 -5
johnson8-4-4 18 45 -22.2 -11.1

10 40 -15 -10
keller4 18 70 27.1 54.2

10 41 97.5 168.2
keller5 18 90 246.6 394.4

10 61 414.7 634.4
MANN-a27 15 247 0.4 0.4

10 244 -1.2 0.8

Instance z MBE MBEp
r MBE

p

h

Lb. % %
MANN-a45 15 677 -0.7 0.4

10 671 -0.1 0.1
MANN-a81 15 2177 0.0 0.3

10 2171 -0.1 0.5
p-hat1000-1 15 85 380 654.1

10 63 577.7 873.0
p-hat1000-2 15 57 589.4 821.0

10 36 1013.8 1325
p-hat1000-3 15 82 364.6 415.8

10 50 668 764
p-hat1500-1 15 69 802.8 1292.7

10 82 686.5 1021.9
p-hat1500-2 15 64 812.5 1112.5

10 45 1226.6 1566.6
p-hat1500-3 15 79 624.0 706.3

10 54 924.0 1111.1
p-hat300-1 18 62 112.9 195.1

10 48 187.5 306.2
p-hat300-2 18 61 121.3 168.8

10 38 247.3 328.9
p-hat300-3 18 76 71.0 100

10 51 145.0 172.5
p-hat500-1 18 74 170.2 301.3

10 50 330 524
p-hat500-2 18 75 178.6 248

10 39 407.6 556.4
p-hat500-3 18 93 125.8 169.8

10 50 300 338
p-hat700-1 15 66 340.9 581.8

10 52 482.6 711.5
p-hat700-2 18 63 357.1 492.0

10 36 672.2 919.4
p-hat700-3 18 78 260.2 330.7

10 44 543.1 588.6
san1000 15 89 319.1 493.2

10 100 260 438
san200-0.7-1 18 69 26.0 53.6

10 50 82 86
san200-0.7-2 18 84 40.4 51.1

10 53 75.4 115.0
san200-0.9-1 18 108 -1.8 0

10 82 18.2 14.6
san200-0.9-2 18 85 20 17.6

10 68 25 27.9
san200-0.9-3 18 83 21.6 18.0

10 67 34.3 26.8
san400-0.5-1 18 79 115.1 194.9

10 58 189.6 289.6
san400-0.7-1 18 84 95.2 144.0

10 55 138.1 209.0
san400-0.7-2 18 78 105.1 158.9

10 42 247.6 309.5
san400-0.7-3 18 73 138.3 180.8

10 47 225.5 287.2
san400-0.9-1 18 97 63.9 75.2

10 75 93.3 98.6
sanr200-0.7 18 61 42.6 63.9

10 45 80 104.4
sanr200-0.9 18 77 12.9 23.3

10 61 31.1 37.7
sanr400-0.5 18 67 152.2 223.8

10 32 406.2 543.7
sanr400-0.7 18 76 103.9 152.6

10 47 231.9 270.2

Fig. 7. Experimental results on maxclique instances.

