# Mini-bucket Elimination with Bucket Propagation 

Emma Rollon and Javier Larrosa<br>Universitat Politecnica de Catalunya,<br>Jordi Girona 1-3, 08034 Barcelona, Spain<br>erollon@lsi.upc.edu, larrosa@lsi.upc.edu


#### Abstract

Many important combinatorial optimization problems can be expressed as constraint satisfaction problems with soft constraints. When problems are too difficult to be solved exactly, approximation methods become the best option. Mini-bucket Elimination (MBE) is a well known approximation method for combinatorial optimization problems. It has a control parameter $z$ that allow us to trade time and space for accuracy. In practice, it is the space and not the time that limits the execution with high values of $z$. In this paper we introduce a new propagation phase that MBE should execute at each bucket. The purpose of this propagation is to jointly process as much information as possible. As a consequence, the undesirable lose of accuracy caused by MBE when splitting functions into different mini-buckets is minimized. We demonstrate our approach in scheduling, combinatorial auction and max-clique problems, where the resulting algorithm $M B E^{p}$ gives important percentage increments of the lower bound (typically $50 \%$ and up to $1566 \%$ ) with only doubling the cpu time.


## 1 Introduction

It is well recognized that many important problems belong to the class of combinatorial optimization problems. In general, combinatorial optimization problems are NP-hard. Therefore, they cannot be solved efficiently with current technologies. Then, the only thing that we can possibly do is to find near-optimal solutions. In that context, it is also desirable to have a quality measure of the solution. One way to achieve this goal is to provide a lower and an upper bound of the optimum. The smaller the gap, the closer we are to the true optimum.

Typically, best results are obtained developing ad-hoc techniques for the instances of interest. However, this requires a lot of work, including the time to learn specific domain peculiarities. An alternative, is to used generic techniques. Although they may not give so accurate results, it may be enough in some applications. Besides, they may provide the starting reference point to evaluate new $a d-h o c$ techniques.

Mini-bucket Elimination (MBE) [1] is one of the most popular bounding techniques. Assuming minimization problems, MBE provides a lower bound of the
optimum and can be combined with local search which provide upper bounds ${ }^{1}$. MBE is very general, since it can be applied to any problem that falls into the category of graphical models. Graphical models include very important optimization frameworks such as soft constraint satisfaction problems [2], Max-SAT, bayesian networks [3], etc. These frameworks have important applications in fields such as routing [4], bioinformatics [5], scheduling [6] or probabilistic reasoning [7]. The good performance of MBE in different contexts has been widely proved [1, 8, 7].

Interestingly, MBE has a parameter $z$ which allow us to trade time and space for accuracy. With current computers, it is the space and not the time what bounds the maximum value of $z$ that can be used in practice. In our previous work [9], we introduced a set of improvements on the way MBE handles memory. As a result, MBE became orders of magnitude more efficient. Thus, higher values of $z$ can be used which, in turn, yields significantly better bounds. In this paper we continue improving the practical applicability of MBE. In particular, we introduce a new propagation phase that MBE must execute at each bucket. Mini-buckets are structured into a tree and costs are moved along branches from the leaves to the root. As a result, the root mini-bucket accumulates costs that will be processed together, while classical MBE would have processed them independently. Note that the new propagation phase does not increase the complexity with respect classical MBE.

Our experiments on scheduling, combinatorial auctions and maxclique show that the addition of this propagation phase increases the quality of the lower bound provided by MBE quite significatively. Although the increase depends on the benchmark, the typical percentage is $50 \%$. However, for some instances, the propagation phase gives a dramatic percentage increment up to $1566 \%$.

## 2 Preliminaries

### 2.1 Soft CSP

Let $\mathcal{X}=\left(x_{1}, \ldots, x_{n}\right)$ be an ordered set of variables and $\mathcal{D}=\left(D_{1}, \ldots, D_{n}\right)$ an ordered set of domains, where $D_{i}$ is the finite set of potential values for $x_{i}$. The assignment (i.e, instantiation) of variable $x_{i}$ with $a \in D_{i}$ is noted ( $x_{i} \leftarrow$ a). A tuple $t$ is an ordered set of assignments to different variables ( $x_{i_{1}} \leftarrow$ $\left.a_{i_{1}}, \ldots, x_{i_{k}} \leftarrow a_{i_{k}}\right)$. The scope of $t$, noted $\operatorname{var}(t)$, is the set of variables that it assigns. The arity of $t$ is $|\operatorname{var}(t)|$. The projection of $t$ over $Y \subseteq \operatorname{var}(t)$, noted $t[Y]$, is a sub-tuple of $t$ containing only the instantiation of variables in $Y$. Let $t$ and $s$ be two tuples having the same instantiations to the common variables. Their join, noted $t \cdot s$, is a new tuple which contains the assignments of both $t$ and $s$. Projecting a tuple $t$ over the empty set $t[\emptyset]$ produces the empty tuple $\lambda$. We say that a tuple $t$ is a complete instantiation when $\operatorname{var}(t)=\mathcal{X}$. In the following, abusing notation, when we write $\forall_{t \in Y}$ we will mean $\forall_{t}$ s.t. $\operatorname{var}(t)=Y$.

[^0]Let $A$ be an ordered set of values, called valuations, and + a conmutative and associative binary operation $+: A \times A \rightarrow A$ such that exists an identity element 0 (namely, $\forall a \in A, a+0=a$ ), and satisfies monotonicity (namely, $\forall a, b, b \in A$, if $a \geq b$ then $(a+b \geq b+c)$ ).
$\mathcal{F}=\left\{f_{1}, \ldots, f_{r}\right\}$ is a set of functions. Each function $f_{j}$ is defined over a subset of variables $\operatorname{var}\left(f_{j}\right) \subseteq \mathcal{X}$ and returns values of $A$ (namely, if $\operatorname{var}(t)=\operatorname{var}\left(f_{j}\right)$ then $\left.f_{j}(t) \in A\right)$. For convenience, we allow to evaluate $f_{j}(t)$ when $\operatorname{var}(t) \supset$ $\operatorname{var}\left(f_{j}\right)$, being equivalent to $f_{j}\left(t\left[\operatorname{var}\left(f_{j}\right)\right]\right)$. In this paper we assume functions explicitly stored as tables.

A soft CSP is a triplet $(\mathcal{X}, \mathcal{D}, \mathcal{F})$ where each function $f \in \mathcal{F}$ specifies how good is each different partial assignment of $\operatorname{var}(f)$. The sum + is used to $a g$ gregate values from different functions. The global quality of an assignment is the sum of values given by all the functions. The usual task of interest is to find the best complete assignment $\mathcal{X}$ in terms of $A$. Different soft CSP frameworks differ in the semantics of $A$. Well-known frameworks include probabilistic CSPs, weighted CSPs, fuzzy CSPs, etc [2].

A soft CSP framework is fair [10] if for any pair of valuations $\alpha, \beta \in A$, with $\alpha \leq \beta$, there exists a maximum difference of $\beta$ and $\alpha$. This unique maximum difference of $\beta$ and $\alpha$ is denoted by $\beta-\alpha$. This property ensures the equivalence of the problem when the two operations + and - are applied. In [10] it is shown that the most important soft constraint frameworks are fair. Although our approach can be used in any fair soft constraint framework, for the sake of simplicity, we will focus on weighted CSPs. In weighted CSPs (WCSPs) $A$ is the set of natural numbers, + and - are the usual sum and subtraction. Thus, the set of soft constraints define the following objective function to be minimized,

$$
F(X)=\sum_{i=1}^{r} f_{i}(X)
$$

### 2.2 Operations over Functions

- The sum of two functions $f$ and $g$ denoted $(f+g)$ is a new function with scope $\operatorname{var}(f) \cup \operatorname{var}(g)$ which returns for each tuple $t \in \operatorname{var}(f) \cup \operatorname{var}(g)$ the sum of costs of $f$ and $g$,

$$
(f+g)(t)=f(t)+g(t)
$$

- Let $f$ and $g$ be two functions such that $\operatorname{var}(g) \subseteq \operatorname{var}(f)$ and $\forall t \in \operatorname{var}(f), f(t) \geq$ $g(t)$. Their subtraction, noted $f-g$ is a new function with scope $\operatorname{var}(f)$ defined as,

$$
(f-g)(t)=f(t)-g(t)
$$

for all tuple $t \in \operatorname{var}(f)$.

- The elimination of variable $x_{i}$ from $f$, denoted $f \downarrow x_{i}$, is a new function with scope $\operatorname{var}(f)-\left\{x_{i}\right\}$ which returns for each tuple $t$ the minimum cost extension of $t$ to $x_{i}$,

```
function \(\operatorname{BE}(\mathcal{X}, \mathcal{D}, \mathcal{F})\)
    for each \(i=n . .1\) do
        \(\mathcal{B}:=\left\{f \in F \mid x_{i} \in \operatorname{var}(f)\right\}\)
        \(g:=\left(\sum_{f \in \mathcal{B}} f\right) \downarrow x_{i}\);
        \(F:=(F \cup\{g\})-\mathcal{B} ;\)
    endfor
    return \((\mathcal{F})\)
endfunction
```

Fig. 1. Bucket Elimination. Given a WCSP $(\mathcal{X}, \mathcal{D}, \mathcal{F})$, the algorithm returns $\mathcal{F}$ containing a constant function with the optimal cost.

$$
\left(f \downarrow x_{i}\right)(t)=\min _{a \in D_{i}}\left\{f\left(t \cdot\left(x_{i} \leftarrow a\right)\right)\right\}
$$

where $t \cdot\left(x_{i} \leftarrow a\right)$ means the extension of $t$ so as to include the assignment of $a$ to $x_{i}$. Observe that when $f$ is a unary function (i.e., arity one), eliminating the only variable in its scope produces a constant.

- The projection of function $f$ over $Y \subset \operatorname{var}(f)$, denoted $f[Y]$, is a new function with scope $Y$ which returns for each tuple $t$ the minimum cost extension of $t$ to $\operatorname{var}(f)$,

$$
(f[Y])(t)=\min _{t^{\prime} \in \operatorname{var}(f) \text { s.t. } t^{\prime}=t \cdot t^{\prime \prime}} f\left(t^{\prime}\right)
$$

Observe that variable elimination and projection are related with the following property,

$$
\left(f \downarrow x_{i}\right)=f\left[\operatorname{var}(f)-\left\{x_{i}\right\}\right]
$$

### 2.3 Bucket and Mini-Bucket Elimination

Bucket elimination (BE, Figure 1 ) $[11,12]$ is a well-known algorithm for weighted CSPs. It uses an arbitrary variable ordering $o$ that we assume, without loss of generality, lexicographical (i.e, $o=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ ). The algorithm eliminates variables one by one, from last to first, according to $o$. The elimination of variable $x_{i}$ is done as follows: $\mathcal{F}$ is the set of current functions. The algorithm computes the so called bucket of $x_{i}$, noted $\mathcal{B}$, which contains all cost functions in $\mathcal{F}$ having $x_{i}$ in their scope (line 2). Next, BE computes a new function $g$ by summing all functions in $\mathcal{B}$ and subsequently eliminating $x_{i}$ (line 3). Then, $\mathcal{F}$ is updated by removing the functions in $\mathcal{B}$ and adding $g$ (line 4). The new $\mathcal{F}$ does not contain $x_{i}$ (all functions mentioning $x_{i}$ were removed) but preserves the value of the optimal cost. The elimination of the last variable produces an empty-scope function (i.e., a constant) which is the optimal cost of the problem. The time and space complexity of $B E$ is exponential in a structural parameter called induced width. In practice, it is the space and not the time what makes the algorithm unfeasible in many instances.

Mini-bucket elimination (MBE) [1] is an approximation of BE that can be used to bound the optimum when the problem is too difficult to be solved exactly. Given a control parameter $z$, MBE partitions buckets into smaller subsets called mini-buckets such that their join arity is bounded by $z+1$. Each mini-bucket is processed independently. Consequently, the output of MBE is a lower bound of the true optimum. The pseudo-code of MBE is the result of replacing lines 3 and 4 in the algorithm of Figure 1 by,
3. $\quad\left\{\mathcal{P}_{1}, \ldots, \mathcal{P}_{k}\right\}:=\operatorname{Partition}(\mathcal{B})$;

3b. for each $j=1 . . k$ do $g_{j}:=\left(\sum_{f \in \mathcal{P}_{j}} f\right) \downarrow x_{i}$;
4. $\quad F:=\left(F \cup\left\{g_{1}, \ldots, g_{k}\right\}\right)-\mathcal{B}$;

The time and space complexity of MBE is $O\left(d^{z+1}\right)$ and $O\left(d^{z}\right)$, respectively. Parameter $z$ allow us to trade time and space for accuracy, because greater values of $z$ increment the number of functions that can be included in each mini-bucket. Therefore, the bounds will be presumably tighter. MBE constitutes a powerful yet extremely general mechanism for lower bound computation.

## 3 Equivalence-preserving transformations in fair frameworks

We say that two WCSPs are equivalent if they have the same optimum. There are several transformations that preserve the equivalence. For instance, if we take any pair of cost functions $f, g \in \mathcal{F}$ from a $\operatorname{WCSP}(\mathcal{X}, \mathcal{D}, \mathcal{F})$ and replace them by their sum $f+g$, the result is an equivalent problem. The replacement of $\mathcal{B}$ by $g$ performed by BE (Figure 1) is another example of equivalence-preserving transformation. Very recently, a new kind of WCSP transformation has been used in the context of soft local consistency $[13,14]$. The general idea is to move costs from one cost function to another. More precisely, costs are subtracted from one cost function and added to another. Formally, let $f$ and $h$ be two arbitrary functions. The movement of costs from $f$ to $g$ is done sequentially in three steps:
$h:=f[\operatorname{var}(f) \cap \operatorname{var}(g)]$
$f:=f-h$
$g:=g+h$

In words, function $h$ contains costs in $f$ that can be captured in terms of the common variables with $g$. Hence, they can be kept either in $h$ or in $f$. Then, this costs are moved from $f$ to $g$. The time complexity of this operation is $O\left(d^{\max \{|\operatorname{var}(f)|,|\operatorname{var}(g)|\}}\right)$. The space complexity is the size of $h$ stored as a table, $O\left(d^{|\operatorname{var}(h)|\}}\right)$, which is negligible in comparison with the larger function $f$.

Example 1. Consider the functions on Figure 2 (a). They are defined over boolean domains and given as a table of costs. Let function $h$ represents the costs that


Fig. 2. Example of functions.
can be moved from function $f$ to function $g$. Observe that, as $f$ and $g$ only share variable $x_{i}$, then $h=f\left[x_{i}\right]$, where $h(f a l s e)=2$ and $h($ true $)=4$. Figure $2(b)$, shows the result of moving the costs from $f$ to $g$. Observe that costs of tuples $t$ such that $\operatorname{var}(t)=\left\{x_{i}, x_{j}, x_{k}\right\}$ are preserved.

## 4 Mini Buckets with Propagation

In this Section we introduce a refinement of MBE. It consists on performing a movement of costs in each bucket before processing it. We incorporate the concept of equivalence-preserving transformation into MBE, but only at the bucket level. The idea is to move costs between minibuckets aiming at a propagation effect. We pursue the accumulation of as much information as possible in one of the mini-buckets.

The following example illustrates and motivates the idea. Suppose that MBE is processing a bucket containing two functions $f$ and $g$, each one forming a minibucket. Variable $x_{i}$ is the one to be eliminated. Standard MBE would process independently each minibucket, eliminating variable $x_{i}$ in each function. It is precisely this independent elimination of $x_{i}$ from each mini-bucket where the lower bound of MBE may lose accuracy. Ideally (i.e, in BE), $f$ and $g$ should be added and their information should travel together along the different buckets. However, in MBE their information is split into two pieces for complexity reasons. What we propose is to transfer costs from $f$ to $g$ (or conversely) before processing the mini-buckets. The purpose is to put as much information as possible in the same mini-bucket, so that all this information is jointly processed as BE would do. Consequently, the pernicious effect of splitting the bucket into mini-buckets will presumably be minimized. Figure 2 depicts a numerical illustration. Consider functions $f$ and $g$ from Figure $2(a)$. If variable $x_{i}$ is eliminated independently, we obtain the functions in Figure $2(c)$. If the problem contains no more functions,

```
function \(M B E^{p}(z)\)
    for each \(i=n . .1\) do
        \(\mathcal{B}:=\left\{f \in F \mid x_{i} \in \operatorname{var}(f)\right\} ;\)
        \(\left\{\mathcal{P}_{1}, \ldots, \mathcal{P}_{k}\right\}:=\operatorname{Partition}(\mathcal{B}, z)\);
        for each \(j=1 . . k\) do \(g_{j}:=\sum_{f \in \mathcal{P}_{j}} f\);
        \((V, E):=\operatorname{PropTree}\left(\left\{g_{1}, \ldots, g_{k}\right\}\right)\);
        Propagation( \((V, E)\) );
        for each \(j=1 . . k\) do \(g_{j}:=g_{j} \downarrow x_{i}\);
        \(F:=\left(F \cup\left\{g_{1}, \ldots, g_{k}\right\}\right)-\mathcal{B} ;\)
    endfor
    return \(\left(g_{1}\right)\);
endfunction
procedure Propagation( \((V, E))\)
    repeat
        select a node \(j\) s.t it has received the messages from all its children;
        \(h_{j}:=g_{j}\left[\operatorname{var}\left(g_{j}\right) \cap \operatorname{var}\left(g_{\text {parent }(j)}\right)\right]\);
        \(g_{j}:=g_{j}-h_{j} ;\)
        \(g_{\text {parent }(j)}:=g_{\text {parent }(j)}+h_{j} ;\)
    until root has received all messages from its children;
endprocedure
```

Fig. 3. Mini-Bucket Elimination with Propagation (preliminary version). Given a WCSP $(\mathcal{X}, \mathcal{D}, \mathcal{F})$, the algorithm returns a zero-arity function $g_{1}$ with a lower bound of the optimum cost.
the final lower bound will be 3 . Consider now the functions in Figure $2(b)$ where costs have been moved from $f$ to $g$. If variable $x_{i}$ is eliminated independently, we obtain the functions in Figure $2(d)$, with which the lower bound is 5 .

The previous example was limited to two mini-buckets containing one function each. Nevertheless, the idea can be easily generalized to arbitrary minibucket arrangements. At each bucket $\mathcal{B}$, we construct a propagation tree $T=$ $(V, E)$ where nodes are associated with mini-buckets and edges represent movement of costs along branches from the leaves to the root. Each node waits until receiving costs from all its children. Then, it sends costs to its parent. This flow of costs accumulates and propagates costs towards the root.

The refinement of MBE that incorporates this idea is called $M B E^{p}$. In Figure 3 we describe a preliminary version. A more efficient version regarding space will be discussed in the next subsection. $M B E^{p}$ and MBE are very similar and, in the following, we discuss the main differences. After partitioning the bucket into mini-buckets (line 3), $M B E^{p}$ computes the sum of all the functions in each minibucket (line 4). Next, it constructs a propagation tree $T=(V, E)$ with one node $j$ associated to each function $g_{j}$. Then, costs are propagated (lines 6, 11-16). Finally, variable $x_{i}$ is eliminated from each mini-bucket (line 7) and resulting functions are added to the problem in replacement of the bucket (line 8).

Procedure Propagation is also depicted in Figure 3. Let $j$ be an arbitrary node of the propagation tree such that has received costs from all its children. It must send costs to its parent parent $(j)$. First, it computes in function $h_{j}$ the costs that can be sent from $j$ to its parent (line 13). Then, function $h_{j}$ is subtracted from $g_{j}$ and summed to $g_{\text {parent }(j)}$ (lines 14 and 15). The propagation phase terminates when the root receives costs from all its children.

### 4.1 Improving the Space complexity

Observe that the previous implementation of $M B E^{p}$ (Figure 3) computes in two steps (lines 4 and 7), what plain MBE computes in one step. Consequently, $M B E^{p}$ stores functions with arity up to $z+1$ while MBE only stores functions with arity up to $z$. Therefore, the previous description of $M B E^{p}$ has a space complexity slightly higher than MBE, given the same value of $z$. In the following, we show how the complexity of $M B E^{p}$ can be made similar to the complexity of MBE. First, we extend the concept of movement of costs to deal with sets of functions. Let $F$ and $G$ be two sets of costs functions. Let $\operatorname{var}(F)=\cup_{f \in F} \operatorname{var}(f)$, $\operatorname{var}(G)=\cup_{g \in G} \operatorname{var}(g)$ and $Y=\operatorname{var}(F) \cap \operatorname{var}(G)$. The movement of costs from $F$ to $G$ is done sequentially in three steps:
$h:=\left(\sum_{f \in F} f\right)[Y]$
$F:=F \cup\{-h\}$
$G:=G \cup\{h\}$
where $-h$ means that costs contained in $h$ are to be subtracted instead of summed, when evaluating costs of tuples on $F$. Observe that the first step can be efficiently implemented as,

$$
\forall_{t \in Y}, h(t):=\min _{\left(t^{\prime} \in \operatorname{var}(F) \text { s.t. } t^{\prime}=t \cdot t^{\prime \prime}\right)}\left\{\sum_{f \in F} f\left(t^{\prime}\right)\right\}
$$

This implementation avoids computing the sum of all the functions in $F$. The time complexity of the operation is $O\left(d^{|\operatorname{var}(F)|}\right)$. The space complexity is $O\left(d^{|Y|}\right)$.

Figure 4 depicts the new version of $M B E^{p}$. The difference with the previous version is that functions in mini-buckets do not need to be summed before the propagation phase (line 4 is omitted). Procedure Propagation moves costs between mini-buckets preserving the set of original functions. Line 7, sums the functions in the mini-buckets and eliminates variable $x_{i}$ in one step, as plain MBE would do.

Observe that the time complexity of line 13 is $O\left(d^{z+1}\right)$, because $\left|\operatorname{var}\left(\mathcal{P}_{j}\right)\right| \leq$ $z+1$ (by definition of mini-bucket). The space complexity is $O\left(d^{z}\right)$ because $|\operatorname{var}(h)| \leq z\left(\right.$ note that $\operatorname{var}\left(\mathcal{P}_{j}\right) \neq \operatorname{var}\left(\mathcal{P}_{\text {parent }(j)}\right)$ because otherwise they would have been merged into one mini-bucket). The previous observation leads to the following result.
Theorem 1. The time and space complexity of $M B E^{p}$ is $O\left(d^{z+1}\right)$ and $O\left(d^{z}\right)$, respectively, where $d$ is the largest domain size and $z$ is the value of the control parameter.

```
function \(M B E^{p}(z)\)
    for each \(i=n . .1\) do
            \(\mathcal{B}:=\left\{f \in F \mid x_{i} \in \operatorname{var}(f)\right\} ;\)
            \(\left\{\mathcal{P}_{1}, \ldots, \mathcal{P}_{k}\right\}:=\operatorname{Partition}(\mathcal{B}, z)\);
            \((V, E):=\operatorname{PropTree}\left(\left\{\mathcal{P}_{1}, \ldots, \mathcal{P}_{k}\right\}\right) ;\)
            Propagation \(((V, E))\);
            for each \(j=1 . . k\) do \(g_{j}:=\left(\left(\sum_{f \in \mathcal{P}_{j}} f\right)-h_{j}\right) \downarrow x_{i}\);
            \(F:=\left(F \cup\left\{g_{1}, \ldots, g_{k}\right\}\right)-\mathcal{B} ;\)
    endfor
    return \(\left(g_{1}\right)\);
ndfunction
rocedure Propagation \(((V, E))\)
    repeat
        select a node \(j\) s.t it has received the messages from all its children;
        \(h_{j}:=\left(\sum_{f \in \mathcal{P}_{j}} f\right)\left[\operatorname{var}\left(\mathcal{P}_{j}\right) \cap \operatorname{var}\left(\mathcal{P}_{\text {parent }(j)}\right)\right] ;\)
        \(\mathcal{P}_{j}:=\mathcal{P}_{j} \cup\left\{-h_{j}\right\} ;\)
        \(\mathcal{P}_{\text {parent }(j)}:=\mathcal{P}_{\text {parent }(j)} \cup\left\{h_{j}\right\} ;\)
    until root has received all messages from its children;
endprocedure
```

Fig. 4. Mini-Bucket Elimination with Propagation. Given a $\operatorname{WCSP}(\mathcal{X}, \mathcal{D}, \mathcal{F})$, the algorithm returns a zero-arity function $g_{1}$ with a lower bound of the optimum cost.

### 4.2 Computation of the Propagation Tree

In our preliminary experiments we observed that the success of the propagation phase of $M B E^{p}$ greatly depends on the flow of information, which is captured in the propagation tree. In the following we discuss two ideas that heuristically lead to good propagation trees. Then, we will propose a simple method to construct good propagation trees.

For the first observation, consider MBE with $z=1$ in a problem with four binary functions $f_{1}\left(x_{1}, x_{2}\right), f_{2}\left(x_{2}, x_{3}\right), f_{3}\left(x_{2}, x_{4}\right), f_{4}\left(x_{3}, x_{4}\right)$. Variable $x_{4}$ is the first to be eliminated. Its bucket contains $f_{3}$ and $f_{4}$. Each function forms a minibucket. $M B E^{p}$ must decide whether to move costs from $f_{3}$ to $f_{4}$ or conversely. Observe that after the elimination of $x_{4}, f_{4}$ will go to the bucket of $x_{3}$ where it will be summed with $f_{2}$. Then, they will go to the bucket of $x_{2}$. However, $f_{3}$ will jump directly to the bucket of $x_{2}$. For this reason, it seems more appropriate to move costs from $f_{3}$ to $f_{4}$. In $f_{4}$ the costs go to a higher mini-bucket, so they have more chances to propagate useful information. One way to formalize this observation is the following: We associate to each mini-bucket $\mathcal{P}_{j}$ a binary number $N_{j}=b_{n} b_{n-1} \ldots b_{1}$ where $b_{i}=1$ iff $x_{i} \in \mathcal{P}_{j}$. We say that mini-bucket $\mathcal{P}_{j}$ is smaller than $\mathcal{P}_{k}$ ( noted $\mathcal{P}_{j}<\mathcal{P}_{k}$ ) if $N_{j}<N_{k}$. In our propagation trees parents will always be larger than their children.

For the second observation, consider three functions $f\left(x_{7}, x_{6}, x_{5}, x_{4}\right), g\left(x_{7}, x_{3}, x_{2}, x_{1}\right)$, $h\left(x_{7}, x_{6}, x_{5}, x_{1}\right)$. Observe that $f$ shares 1 variable with $g$ and 3 with $h$. The num-
ber of common variables determines the arity of the function that is used as a bridge in the cost transfer. The narrower the bridge, the less information that can be captured. Therefore, it seems better to move costs between $f$ and $h$ than between $f$ and $g$.

In accordance with the two previous observations, we construct the propagation tree as follows: the parent of mini-bucket $\mathcal{P}_{u}$ will be mini-bucket $\mathcal{P}_{w}$ such that $\mathcal{P}_{u}<\mathcal{P}_{w}$ and they share a maximum number of variables. This strategy combines the two criteria discussed above.

## 5 Experimental Results

We have tested our approach in three different domains. The purpose of the experiments is to evaluate the effectiveness of the propagation phase and the impact of the propagation tree on that propagation. To that end, we compare the lower bound obtained with three algorithms: standard MBE, MBE with bucket propagation using as a propagation tree a chain of mini-buckets randomly ordered (i.e., $M B E_{r}^{p}$ ), and MBE with bucket propagation using a propagation tree heuristically built as explained in Section 4.2 (i.e., $M B E_{h}^{p}$ ). For each domain, we execute those three algorithms with different values of the control parameter $z$ in order to analyze its effect (the highest value of $z$ reported is the highest feasible value given the available memory). In all our experiments, the order of variable elimination is established with the min-fill heuristic. All the experiments are executed in a Pentium IV running Linux with 2 Gb of memory and 3 GHz .

### 5.1 Scheduling

For our first experiment, we consider the scheduling of an earth observation satellite. We experiment with instances from Spot5 satellite [15]. These instances have unary, binary and ternary cost functions, and domains of size 2 and 4 . Some instances include in their original formulation an additional capacity constraint that we discard on this benchmark.

Figure 5 shows the results. The first column identifies the instance. The second column indicates the value of the control parameter $z$ with which the algorithms are executed. Columns third and fourth report the lower bound obtained and the execution time for standard MBE, respectively. Columns fifth and sixth indicates for $M B E_{r}^{p}$ the percentage increment of the lower bound measured as $\left(\left(L b_{M B E_{r}^{p}}-L b_{M B E}\right) / L b_{M B E}\right) * 100$ and the execution time. Columns seventh and eighth reports the same information for $M B E_{h}^{p}$.

The first thing to be observed is that the results obtained with $M B E_{r}^{p}$ does not follow a clear tendency. $M B E_{r}^{p}$ increases and decreases the lower bound obtained with standard $M B E$ almost the same times. However, $M B E_{h}^{p}$ increases the lower bound obtained with $M B E$ for all the instances. Moreover, when both $M B E_{r}^{p}$ and $M B E_{h}^{p}$ increase the lower bound, $M B E_{h}^{p}$ is always clearly superior. Therefore, it is clear that an adequate propagation tree impacts on the bounds obtained.

| Instance | Z | $M B E(\mathrm{z})$ |  | $M B E_{r}^{p}(\mathrm{z})$ |  | $M B E_{h}^{p}(\mathrm{z})$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Lb. | Time(sec.) | \% | Time(sec.) | \% | Time(sec.) |
| 1506 | 20 | 184247 | 827.63 | 1.6 | 1628.93 | 29.8 | 1706.6 |
|  | 15 | 163301 | 25.43 | -5.5 | 51.48 | 30.6 | 51.39 |
|  | 10 | 153274 | 1.33 | -13.7 | 2.65 | 21.5 | 2.64 |
| 1401 | 20 | 184084 | 691.08 | 16.8 | 1469.36 | 58.6 | 1574.26 |
|  | 15 | 170082 | 20.82 | 4.7 | 47.35 | 45.8 | 46.92 |
|  | 10 | 155075 | 1.02 | -10.3 | 2.13 | 53.5 | 2.17 |
| 1403 | 20 | 181184 | 814.55 | 7.1 | 1702.82 | 59.6 | 1919.48 |
|  | 15 | 162170 | 27.82 | 7.3 | 55.94 | 57.3 | 56.9 |
|  | 10 | 146155 | 1.3 | 10.9 | 2.58 | 60.2 | 2.6 |
| 1405 | 20 | 191258 | 1197.06 | 0.5 | 2537.64 | 42.3 | 2622.88 |
|  | 15 | 169233 | 33.88 | -2.3 | 93.88 | 54.9 | 81.17 |
|  | 10 | 142206 | 1.7 | -25.3 | 3.51 | 64.7 | 3.5 |
| 1407 | 20 | 191342 | 1415.91 | -4.0 | 2935.78 | 53.8 | 3008.78 |
|  | 15 | 166298 | 47.44 | 3.5 | 94.17 | 60.1 | 102.78 |
|  | 10 | 144264 | 2.03 | 13.8 | 4.19 | 68.6 | 4.23 |
| 28 | 20 | 134105 | 252.14 | 2.2 | 500.97 | 38.0 | 510.72 |
|  | 15 | 121105 | 7.77 | -1.6 | 15 | 52.8 | 16.16 |
|  | 10 | 103105 | 0.36 | 16.4 | 0.71 | 49.4 | 0.71 |
| 29 | 20 | 8058 | 4.92 | -0.01 | 5.3 | 0.01 | 5.32 |
|  | 15 | 8055 | 0.28 | -0.1 | 0.34 | 0.02 | 0.34 |
|  | 10 | 8050 | 0.01 | -0.01 | 0.02 | 0.07 | 0.02 |
| 408 | 20 | 5212 | 51.19 | 19.1 | 75.39 | 19.3 | 72.5 |
|  | 15 | 5200 | 2.11 | 18.7 | 3.29 | 19.3 | 3.41 |
|  | 10 | 2166 | 0.11 | 38.1 | 0.2 | 139.0 | 0.2 |
| 412 | 20 | 17314 | 167.91 | 5.4 | 278.29 | 40.5 | 278.7 |
|  | 15 | 15270 | 6.49 | 6.2 | 10.98 | 72.1 | 11.1 |
|  | 10 | 10233 | 0.27 | 87.8 | 0.5 | 88.4 | 0.78 |
| 414 | 20 | 23292 | 629.36 | -12.9 | 1278.39 | 17.4 | 1306.98 |
|  | 15 | 18268 | 20.14 | -16.3 | 42.87 | 49.4 | 42.99 |
|  | 10 | 16213 | 1.05 | -31.0 | 2.35 | 49.8 | 2.09 |
| 42 | 20 | 127050 | 38.9 | -4.7 | 71.47 | 7.8 | 68.35 |
|  | 15 | 111050 | 1.43 | -1.8 | 2.52 | 14.4 | 2.55 |
|  | 10 | 93050 | 0.06 | 2.1 | 0.12 | 19.3 | 0.12 |
| 505 | 20 | 19240 | 51.36 | -36.3 | 66.9 | 5.2 | 63.16 |
|  | 15 | 16208 | 2.2 | -18.5 | 3.35 | 0.1 | 3.23 |
|  | 10 | 13194 | 0.15 | -15.2 | 0.21 | 15.1 | 0.21 |
| 507 | 20 | 16292 | 276.74 | -6.1 | 510.66 | 0.2 | 520.3 |
|  | 15 | 14270 | 9.84 | 6.7 | 19.01 | 42.2 | 18.88 |
|  | 10 | 11226 | 0.47 | 8.6 | 0.92 | 53.7 | 0.92 |
| 509 | 20 | 22281 | 507.64 | 4.6 | 1026.43 | 22.5 | 1046.89 |
|  | 15 | 20267 | 16.2 | -24.6 | 34.68 | 34.7 | 34.72 |
|  | 10 | 14219 | 0.83 | 14.0 | 1.64 | 77.7 | 1.62 |

Fig. 5. Experimental results on Spot5 instances.

Regarding $M B E_{h}^{p}$, it increases up to $139 \%$ the lower bound with respect $M B E$ (e.g. instance 408). The mean increment is $54 \%, 38 \%$, and $28 \%$ when the value of the control parameter $z$ is 10,15 , and 20 , respectively. Note that the effect of the propagation is higher for lower values of $z$ because, as we increase the value of $z$, the number of functions in each mini-bucket increases and the number of mini-buckets decreases. Therefore, the propagated information also decreases and the effect of the propagation is diminished. Moreover, the lower bounds obtained with $M B E_{h}^{p}$ and $z$ set to 10 outperforms the ones obtained with $M B E$ and $z$ set to 20 in almost all the instances, which means that the time and space required for obtaining a bound of a given quality is decreased.

Regarding cpu time, $M B E_{h}^{p}$ is from 2 to 3 times slower than MBE. The reason is that cost functions are evaluated twice: the first one during the propagation


Fig. 6. Combinatorial Auctions. Path distribution.
phase for establishing the costs to be moved, and the second one during the regular process of variable elimination. However, it is important to note that it is the space and not the time what bounds the maximum value of $z$ that can be used in practice. As a consequence, that constant increase in time is not that significant as the space complexity remains the same.

### 5.2 Combinatorial Auctions

Combinatorial auctions (CA) allow bidders to bid for indivisible subsets of goods. Consider a set of goods $\{1,2, \ldots, n\}$ that go on auction. There are $m$ bids. Bid $j$ is defined by the subset of requested goods $X_{j} \subseteq\{1,2, \ldots, n\}$ and the money offer $b_{j}$. The bid-taker must decide which bids are to be accepted maximizing the benefits.

We have generated CA using the path and regions model of the CATS generator [16]. We experiment on instances with 20 and 50 goods, varying the number of bids from 80 to 200 . For each parameter configuration, we generate samples of size 10 . We execute algorithms $M B E, M B E_{r}^{p}$, and $M B E_{h}^{p}$ with $z$ equal to 15 and 20. We do not report results with $M B E_{r}^{p}$ because it was always very inferior than $M B E_{h}^{p}$. For space reasons, we only report results on the path model. The results for the regions model follows the same pattern.

Figure 6 reports the results for path instances with 20 and 50 goods, respectively. As can be observed, the behaviour for both configurations is almost the same. Regarding the algorithms, it is clear that $M B E_{h}^{p}$ always outperformes $M B E$. Note that the lower bound obtained with $M B E_{h}^{p}(z=15)$ is clearly superior than that obtained with $\operatorname{MBE}(z=20)$. Moreover, as pointed out in the previous domain, the effect of the propagation in each sample point is higher for $z=15$ than for $z=20$. That is, the percentage of increment in the lower bound obtained with $M B E_{h}^{p}(z=15)$ is higher than that of $M B E_{h}^{p}(z=20)$. Finally, it is important to note that the impact of the propagation is higher when the problems become harder (i.e., as the number of bids increase).

### 5.3 Maxclique

A clique of a graph $G=(V, E)$ is a set $S \subseteq V$, such that every two nodes in $S$ are joined by an edge of $E$. The maximum clique problem consists on finding the largest cardinality of a clique. The maximum clique problem can be easily encoded as a minimization problem (i.e., minimize the number of nodes in $V-S$ ).

We test our approach on the dimacs benchmark [17]. Figure 7 reports the results. The first column identifies the instance. The second column indicates the value of the control parameter $z$ with which the algorithms are executed. The third column report the lower bound obtained with standard MBE. Columns fourth and fifth indicates, for $M B E_{r}^{p}$ and $M B E_{l}^{p}$, the percentage of increment in the lower bound with respect $M B E$, respectively. As the behaviour of the cpu time is the same as for the previous benchmark, we do not report this information.
$M B E_{r}^{p}$ increases the lower bound obtained with standard $M B E$ for all the instances except for those of hamming and johnson. The percentage of increment is up to $1226 \%$ when the value of the control parameter $z$ is 10 , and up to $812 \%$ when $z$ is the highest value. The best results are obtained with $M B E_{h}^{p}$ which obtains a percentage increment of $1566 \%$ (see instance $p$-hat1500-2). In this case, the increase ranges from $14.6 \%$ to $1566 \%$ when $z$ is set to 10 , and from $17.6 \%$ to $1292 \%$ for the highest value of $z$.

It is important to note that the bound obtained with $M B E_{h}^{p}$ is always higher than that of $M B E_{r}^{p}$. For some instances, the percentage of increment of $M B E_{h}^{p}$ is more than 4 times higher the one obtained with $M B E_{r}^{p}$ (e.g. instance $c$ -fat200-1). Therefore, it is clear that an adequate propagation tree impacts on the propagation phase and, as a consequence, on the bounds obtained.

## 6 Conclusions and Future Work

Mini-bucket elimination (MBE) is a well-known approximation algorithm for combinatorial optimization problems. It has a control parameter $z$ which allow us to trace time and space for approximation accuracy. In practice, it is usually the space rather than the cpu time which limits the control parameter.

In this paper we introduce a new propagation phase that MBE should execute at each bucket. In the new algorithm, that we call $M B E^{p}$, the idea is to move costs along mini-buckets in order to accumulate as much information as possible in one of them. The propagation phase is based on a propagation tree where each node is a mini-bucket and edges represent movements of costs along branches from the leaves to the root. Finally, it is important to note that the propagation phase does not increase the asymptotical time and space complexity of the original MBE algorithm.

We demonstrate the effectiveness of our algorithm in scheduling, combinatorial auction and maxclique problems. The typical percentage of increment in the lower bound obtained is $50 \%$. However, for almost all maxclique instances the percentage of increment ranges from $250 \%$ to a maximum of $1566 \%$. Therefore,
$M B E^{p}$ is able to obtain much more accurate lower bounds than standard MBE using the same amount of resources.

In our future work we want to integrate the propagation phase into the depth-first mini-bucket elimination algorithm [9]. The two main issues are how the computation tree rearrangements affect the bucket propagation and how to efficiently deal with the functions maintaining the transferred costs.

## Acknowledgement

This research has been funded with project TIN2005-09312-C03-02.

## References

1. Dechter, R., Rish, I.: Mini-buckets: A general scheme for bounded inference. Journal of the ACM 50 (2003) 107-153
2. Bistarelli, S., Fargier, H., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G.: Semiring-based CSPs and valued CSPs: Frameworks, properties and comparison. Constraints 4 (1999) 199-240
3. Pearl, J.: Probabilistic Inference in Intelligent Systems. Networks of Plausible Inference. Morgan Kaufmann, San Mateo, CA (1988)
4. H. Xu, R.R., Sakallah, K.: sub-sat: A formulation for relaxed boolean satisfiability with applications in rounting. In: Proc. Int. Symp. on Physical Design, CA (2002)
5. D.M. Strickland, E.B., Sokol, J.: Optimal protein structure alignment using maximum cliques. Operations Research 53 (2005) 389-402
6. Vasquez, M., Hao, J.: A logic-constrained knapsack formulation and a tabu algorithm for the daily photograph scheduling of an earth observation satellite. Journal of Computational Optimization and Applications 20(2) (2001)
7. Park, J.D.: Using weighted max-sat engines to solve mpe. In: Proc. of the $18^{\text {th }}$ AAAI, Edmonton, Alberta, Canada (2002) 682-687
8. Kask, K., Dechter, R.: A general scheme for automatic generation of search heuristics from specification dependencies. Artificial Intelligence 129 (2001) 91-131
9. Rollon, E., Larrosa, J.: Depth-first mini-bucket elimination. In: Proc. of the $11^{t h}$ CP, Sitges (Spain), LNCS 3709. Springer-Verlag. (2005) 563-577
10. Cooper, M., Schiex, T.: Arc consistency for soft constraints. Artificial Intelligence 154 (2004) 199-227
11. Dechter, R.: Bucket elimination: A unifying framework for reasoning. Artificial Intelligence 113 (1999) 41-85
12. Bertele, U., Brioschi, F.: Nonserial Dynamic Programming. Academic Press (1972)
13. Larrosa, J., Schiex, T.: Solving weighted csp by maintaining arc-consistency. Artificial Intelligence 159 (2004) 1-26
14. Cooper, M.: High-order consistency in valued constraint satisfaction. Constraints 10 (2005) 283-305
15. Bensana, E., Lemaitre, M., Verfaillie, G.: Earth observation satellite management. Constraints 4(3) (1999) 293-299
16. K.Leuton-Brown, M., Y.Shoham: Towards a universal test suite for combinatorial auction algorithms. ACM E-Commerce (2000) 66-76
17. Johnson, D.S., Trick, M.: Second dimacs implementation challenge: cliques, coloring and satisfiability. DIMACS Series in Discrete Mathematics and Theoretical Computer Science. AMS 26 (1996)

| Instance | z | MBE | $M B E_{r}^{p}$ | $M B E_{h}^{p}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Lb. | \% | \% |
| brock200-1 | 18 | 66 | 30.3 | 48.4 |
|  | 10 | 51 | 52.9 | 78.4 |
| brock200-2 | 18 | 55 | 67.2 | 103.6 |
|  | 10 | 29 | 200 | 268.9 |
| brock200-3 | 18 | 64 | 48.4 | 68.7 |
|  | 10 | 38 | 139.4 | 173.6 |
| brock200-4 | 18 | 63 | 36.5 | 65.0 |
|  | 10 | 41 | 121.9 | 131.7 |
| brock400-1 | 18 | 79 | 100 | 141.7 |
|  | 10 | 46 | 256.5 | 273.9 |
| brock400-2 | 18 | 75 | 114.6 | 157.3 |
|  | 10 | 44 | 261.3 | 277.2 |
| brock400-3 | 18 | 87 | 88.5 | 114.9 |
|  | 10 | 44 | 250 | 286.3 |
| brock400-4 | 18 | 76 | 106.5 | 160.5 |
|  | 10 | 47 | 248.9 | 289.3 |
| brock800-1 | 18 | 71 | 336.6 | 454.9 |
|  | 10 | 41 | 675.6 | 773.1 |
| brock800-2 | 18 | 63 | 395.2 | 520.6 |
|  | 10 | 37 | 748.6 | 875.6 |
| brock800-3 | 18 | 68 | 352.9 | 483.8 |
|  | 10 | 44 | 604.5 | 706.8 |
| brock800-4 | 18 | 71 | 343.6 | 460.5 |
|  | 10 | 36 | 758.3 | 902.7 |
| c-fat200-1 | 18 | 71 | 32.3 | 78.8 |
|  | 10 | 62 | 27.4 | 112.9 |
| c-fat200-2 | 18 | 63 | 38.0 | 82.5 |
|  | 10 | 48 | 77.0 | 156.2 |
| c-fat200-5 | 18 | 55 | 23.6 | 12.7 |
|  | 10 | 37 | 32.4 | 70.2 |
| c-fat500-10 | 18 | 77 | 115.5 | 123.3 |
|  | 10 | 52 | 173.0 | 253.8 |
| c-fat500-1 | 18 | 132 | 84.0 | 137.1 |
|  | 10 | 107 | 126.1 | 196.2 |
| c-fat500-2 | 18 | 108 | 108.3 | 164.8 |
|  | 10 | 85 | 160 | 254.1 |
| c-fat500-5 | 18 | 83 | 145.7 | 202.4 |
|  | 10 | 74 | 163.5 | 264.8 |
| hamming10-2 | 18 | 412 | -66.9 | -72.0 |
|  | 10 | 419 | -72.0 | -73.7 |
| hamming10-4 | 18 | 119 | 264.7 | 413.4 |
|  | 10 | 77 | 451.9 | 720.7 |
| hamming6-2 | 18 | 32 | -28.1 | -31.2 |
|  | 10 | 32 | -50 | -59.3 |
| hamming6-4 | 18 | 45 | -4.4 | 2.2 |
|  | 10 | 33 | 9.0 | 33.3 |
| hamming8-2 | 18 | 114 | -59.6 | -64.9 |
|  | 10 | 113 | -74.3 | -78.7 |
| hamming8-4 | 18 | 82 | 46.3 | 89.0 |
|  | 10 | 51 | 113.7 | 215.6 |
| johnson16-2-4 | 18 | 72 | -4.1 | 11.1 |
|  | 10 | 56 | 10.7 | 48.2 |
| johnson32-2-4 | 18 | 195 | 27.6 | 71.2 |
|  | 10 | 134 | 75.3 | 150 |
| johnson8-2-4 | 18 | 23 | -4.3 | 0 |
|  | 10 | 20 | -20 | -5 |
| johnson8-4-4 | 18 | 45 | -22.2 | -11.1 |
|  | 10 | 40 | -15 | -10 |
| keller4 | 18 | 70 | 27.1 | 54.2 |
|  | 10 | 41 | 97.5 | 168.2 |
| keller5 | 18 | 90 | 246.6 | 394.4 |
|  | 10 | 61 | 414.7 | 634.4 |
| MANN-a27 | 15 | 247 | 0.4 | 0.4 |
|  | 10 | 244 | -1.2 | 0.8 |


| Instance | Z | MBE | $M B E_{r}^{p}$ | $M B E_{h}^{p}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Lb. | \% | \% |
| MANN-a45 | 15 | 677 | -0.7 | 0.4 |
|  | 10 | 671 | -0.1 | 0.1 |
| MANN-a81 | 15 | 2177 | 0.0 | 0.3 |
|  | 10 | 2171 | -0.1 | 0.5 |
| p-hat1000-1 | 15 | 85 | 380 | 654.1 |
|  | 10 | 63 | 577.7 | 873.0 |
| p-hat1000-2 | 15 | 57 | 589.4 | 821.0 |
|  | 10 | 36 | 1013.8 | 1325 |
| p-hat1000-3 | 15 | 82 | 364.6 | 415.8 |
|  | 10 | 50 | 668 | 764 |
| p-hat1500-1 | 15 | 69 | 802.8 | 1292.7 |
|  | 10 | 82 | 686.5 | 1021.9 |
| p-hat1500-2 | 15 | 64 | 812.5 | 1112.5 |
|  | 10 | 45 | 1226.6 | 1566.6 |
| p-hat1500-3 | 15 | 79 | 624.0 | 706.3 |
|  | 10 | 54 | 924.0 | 1111.1 |
| p-hat300-1 | 18 | 62 | 112.9 | 195.1 |
|  | 10 | 48 | 187.5 | 306.2 |
| p-hat300-2 | 18 | 61 | 121.3 | 168.8 |
|  | 10 | 38 | 247.3 | 328.9 |
| p-hat300-3 | 18 | 76 | 71.0 | 100 |
|  | 10 | 51 | 145.0 | 172.5 |
| p-hat500-1 | 18 | 74 | 170.2 | 301.3 |
|  | 10 | 50 | 330 | 524 |
| p-hat500-2 | 18 | 75 | 178.6 | 248 |
|  | 10 | 39 | 407.6 | 556.4 |
| p-hat500-3 | 18 | 93 | 125.8 | 169.8 |
|  | 10 | 50 | 300 | 338 |
| p-hat700-1 | 15 | 66 | 340.9 | 581.8 |
|  | 10 | 52 | 482.6 | 711.5 |
| p-hat700-2 | 18 | 63 | 357.1 | 492.0 |
|  | 10 | 36 | 672.2 | 919.4 |
| p-hat700-3 | 18 | 78 | 260.2 | 330.7 |
|  | 10 | 44 | 543.1 | 588.6 |
| san1000 | 15 | 89 | 319.1 | 493.2 |
|  | 10 | 100 | 260 | 438 |
| san200-0.7-1 | 18 | 69 | 26.0 | 53.6 |
|  | 10 | 50 | 82 | 86 |
| san200-0.7-2 | 18 | 84 | 40.4 | 51.1 |
|  | 10 | 53 | 75.4 | 115.0 |
| san200-0.9-1 | 18 | 108 | -1.8 | 0 |
|  | 10 | 82 | 18.2 | 14.6 |
| san200-0.9-2 | 18 | 85 | 20 | 17.6 |
|  | 10 | 68 | 25 | 27.9 |
| san200-0.9-3 | 18 | 83 | 21.6 | 18.0 |
|  | 10 | 67 | 34.3 | 26.8 |
| san400-0.5-1 | 18 | 79 | 115.1 | 194.9 |
|  | 10 | 58 | 189.6 | 289.6 |
| san400-0.7-1 | 18 | 84 | 95.2 | 144.0 |
|  | 10 | 55 | 138.1 | 209.0 |
| san400-0.7-2 | 18 | 78 | 105.1 | 158.9 |
|  | 10 | 42 | 247.6 | 309.5 |
| san400-0.7-3 | 18 | 73 | 138.3 | 180.8 |
|  | 10 | 47 | 225.5 | 287.2 |
| san400-0.9-1 | 18 | 97 | 63.9 | 75.2 |
|  | 10 | 75 | 93.3 | 98.6 |
| sanr200-0.7 | 18 | 61 | 42.6 | 63.9 |
|  | 10 | 45 | 80 | 104.4 |
| sanr200-0.9 | 18 | 77 | 12.9 | 23.3 |
|  | 10 | 61 | 31.1 | 37.7 |
| sanr400-0.5 | 18 | 67 | 152.2 | 223.8 |
|  | 10 | 32 | 406.2 | 543.7 |
| sanr400-0.7 | 18 | 76 | 103.9 | 152.6 |
|  | 10 | 47 | 231.9 | 270.2 |

Fig. 7. Experimental results on maxclique instances.


[^0]:    ${ }^{1}$ In the original description MBE also provides an upper bound, but in this paper we will disregard this feature

