
Multi-objective Russian Doll Search

Emma Rollon and Javier Larrosa ∗

Universitat Politecnica de Catalunya
Jordi Girona 1-3, 08034 Barcelona, Spain
erollon@lsi.upc.edu, larrosa@lsi.upc.edu

Abstract

Russian Doll Search (RDS) is a well-known algorithm for
combinatorial optimization. In this paper we extend it from
mono-objective to multi-objective optimization. We demon-
strate its practical applicability in the challenging multiple-
orbit SPOT5 instances. Besides being much more efficient
than any other alternatives, multi-objective RDS can solve an
instance which could not have been solved previously.

Introduction
Many real world problems involve multiple measures of
performance or objectives, which should be simultaneously
optimized (Ehrgott & Gandibleux 2002). Consider the
scheduling of an earth observation satellite. The satellite or-
bits the earth while taking photographs requested by differ-
ent customers. Each photograph has an importance. More-
over, there is a limitation on the on-board recording capacity.
Therefore, the schedule should maximaze the overall impor-
tance of selected photographs while minimizing the over-
all memory usage. Optimality in multi-objective optimiza-
tion is characterized by a family of pareto-optimal alterna-
tives which are both optimal and incomparable among them.
Constraint Programming deals with algorithms for combi-
natorial problems (Apt 2003). Most algorithmic research in
the field is devoted to so-called satisfaction problems: prob-
lems that can be specified as a set of constraints that must be
simultaneously satisfied. There is also a well established line
of research on algorithms for mono-objective optimization
(Rossi, van Beek, & Walsh 2006). Only very recently, some
authors have started to look into multi-objective problems
under the constraint programming paradigm (Junker 2006;
Rollon & Larrosa 2006a; 2006b). The motivation of these
works is not only to accommodate multi-objective optimiza-
tion into the field, but also to exploit the multi-objective na-
ture of some satisfaction problems. (Junker 2006; Rollon &
Larrosa 2006b) say that a problem has multi-objective nature
if it contains several constraints of the form Fi(X) < K.
Solutions to such problems must be sufficiently good with
respect each Fi, which is somehow related to the computa-
tion of pareto-optimal solutions.

∗This work was funded with project TIN2006-15387-C03-02.
Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

In this paper, we extend Russian Doll Search (RDS) (Ver-
faillie, Lemaı̂tre, & Schiex 1996), a well-known algorithm,
from mono-objective to multi-objective optimization. This
method has been proved to be very efficient in certain classes
of important problems. In particular, it is the best current op-
tion in the SPOT5 benchmark (Bensana et al. 1996) which
contains satellite scheduling instances. However, RDS fails
when considering the so-called multiple orbit instances. We
show that it is convenient to look at these instances as if
they were multi-objective because they can be broken into
independent subproblems. Then, we show that our multi-
objective RDS is the best current alternative to deal with
such subproblems. In particular, we solve for the first time
instance 1504.

Preliminaries
Let X = (x1, . . . , xn) be an ordered set of variables and
D = (D1, . . . , Dn) an ordered set of domains, where Di is
the finite set of potential values for xi. The assignment (i.e,
instantiation) of variable xi with a ∈ Di is noted (xi = a).
A complete assignment is an assignment of all the variables
and it is noted A. We will use X

j
i as a short hand for

xi, xi+1, . . . , xj , a subset of the variables. Similarly, A
j
i

will denote (xi = ai), (xi+1 = ai+1), . . . , (xj = aj), an
assignment of X

j
i (note that A = An

1). The join of two
assignments is noted A

j
i · A

l
k.

A cost function f with scope var(f) ⊆ X associates
a value to each assignment of var(f). We will use |f |
as a short-hand of |var(f)|, which is the arity of f . Let
xi ∈ var(f) and a ∈ Di. The partial instantiation of f
with xi = a, noted f(xi = a), is the new function obtained
from f in which xi has been conditioned (i.e., fixed) to a.
Note that, when xi is the only variable in the scope of f , its
instantiation produces a constant.

Mono-objective WCSP
A Weighted CSP (WCSP) (Rossi, van Beek, & Walsh 2006)
is a triple P = (X,D,F), where X and D are variables and
domains. F = {f1, . . . , fr} is a set of cost functions.The
objective function is,

F (X) =

r
∑

i=1

fi(Yi)

(a)

X

(b)

X

X

Figure 1: Efficient frontiers.

where Yi ⊆ X is the scope of fi. We make the usual as-
sumption of costs being natural numbers. A solution is a
complete assignment A. An optimal solution is a complete
assignment A such that ∀A′, F (A) ≤ F (A′). The optimum
of the objective function is the value F (A). The usual task
of interest is to find the optimum and one (of the possibly
many) optimal assignments A.

Consider a WCSP P = (X,D,F) and an assignment
A

j
i . Problem P conditioned to A

j
i , noted P (Aj

i), is a
new problem in which functions in F are partially as-
signed with A

j
i . Formally, P (Aj

i) = (X − X
j
i ,D −

{Di, . . . , Dj}, {f(Aj
i)|f ∈ F}).

A WCSP can be represented by its interaction graph
G = (V, E) (also called constraint graph), which contains
one node per variable and one arc connecting any pair of
nodes whose variables are included in the scope of some
function. When the constraint graph is not connected, it
means that the problem is formed by independent subprob-
lems. As a consequence, each part can be solved indepen-
dently. The optimal cost of the overall WCSP is the sum of
the cost obtained for each connected part.

Multi-objective Weighted CSP
Let consider problems with p objectives. A cost vector
~v = (v1, . . . , vp) is a vector of p components where each
vj ∈ N represents the cost with respect objective j. A multi-
objective function f is a function that associates a cost vec-
tor to each assignment of its scope. Let ~v and ~u be two
cost vectors. We say that ~v dominates ~u (noted ~v ≤ ~u) if
∀j, vj ≤ uj . We say that ~v < ~u if ~v ≤ ~u and ~v 6= ~u. The
sum of cost vectors is the usual point-wise sum.

Let α be a set of cost vectors. We define its non-
domination closure as ‖α‖ = {~u ∈ α |∀~v ∈ α, ~v 6< ~u}.
A set of vectors closed under non-domination is called fron-
tier. Let α and β be two frontiers. We say that α dominates
β (noted α ≤ β) if ∀~v ∈ β, ∃~u ∈ α s.t ~u ≤ ~v. We say
that α < β if α ≤ β and α 6= β. The sum of frontiers is
α + β = ‖{~w = ~u + ~v| ~u ∈ α,~v ∈ β}‖

Example 1 Consider bi-dimensional cost vectors. Figure 1
(a) depicts a set α of vectors (each vector is a dot in the 2D
space). Each vector ~v is the top-right corner of a rectangle
(doted lines). Any point in the rectangle would dominate ~v.
Each ~v is also the bottom-left corner of an infinitely large
rectangle (solid lines). Any point in that rectangle would be
dominated by ~v. The set α is a frontier since no point is
dominated by any other. Figure 1 (b) depicts two frontiers α

as dots and β as crosses. As it can be seen, α < β because
the area dominated by α contains all the elements of β.

A multi-objective weighted constraint satisfaction prob-
lem (MO-WCSP) (Rollon & Larrosa 2006a) is a triple P =
(X,D,F), where X , D and F are variables, domains and
multi-objective functions, respectively. The sum of func-
tions in F defines the objective function F . The only dif-
ference with respect to mono-objective WCSP is that multi-
objective functions are used. A solution is a complete as-
signment A. A solution A is efficient or pareto optimal
if ∀A′, F (A′) 6< F (A). The efficient frontier is the set
E = {F (A)| ∀A′, F (A′) 6< F (A)}. The usual task of inter-
est is to compute E and, for each ~v ∈ E , one (of the possibly
many) pareto optimal assignment with cost ~v.1

As in the WCSP case, each MO-WCSP instance has an
associated interaction graph G computed in the same way:
one node per variable and one arc connecting any pair of
nodes whose variables are included in the scope of some mo-
function. When the graph is not connected, each subpart can
be solved independently. The efficient frontier of the overall
problem is the sum of the efficient frontier of each subpart.

Depth First Branch and Bound
Multi-objective problems can be solved with a depth-first
branch-and-bound schema, which searches depth-first the
tree of possible assignments. The output of the search is
the efficient frontier of the problem E . The algorithm han-
dles two frontiers, that we call lower and upper bound fron-
tiers. The upper bound frontier (ubf) is an overestimation
of the efficient frontier E . Formally, a valid ubf satisfies
that E ≤ ubf.

During search, ubf is the set of cost vectors of the best
solutions found so far (which are the current candidates to be
part of the efficient frontier). ubf is a frontier because when
a new cost vector is added, all those that are dominated can
be removed (they cannot be part of E). It is easy to see that
during the execution of the algorithmubf is valid. When the
whole search tree is traversed, clearly ubf = E . Moreover,
at each visited node, the algorithm computes a lower bound
frontier (lbf) of the current problem using a bounding eval-
uation function. lbf is an underestimation of the efficient
frontier of the current problem. Formally, a valid lbf satis-
fies that, lbf ≤ E ′ where E ′ is the efficient frontier of the
original problem conditioned with the current assignment.
The algorithm backtracks if the upper bound dominates the
lower bound (i.e., ubf ≤ lbf), because it implies that the
global efficient frontier dominates the current subproblem
efficient frontier (i.e., E ≤ E ′). Consequently, the current
assignment cannot lead to any new efficient cost vector.

MO-BB (Figure 2, lines 1-11) is a recursive description
of the previous algorithm. MO-BB receives a MO-WCSP
instance P = (X,D,F) and the current best frontier ubf.
In the initial call, P is the original problem and ubf can be
set to any frontier such that E ≤ ubf. First of all, if no
variable remains, the cost of the current assignment (stored

1Sometimes E is too large to be reported and must be approxi-
mated. In this paper we disregard such possibility.

procedure MO-BB(P = (X,D,F),ubf)
1. if X = ∅ then ubf := ‖ubf ∪

P

f∈F
f‖;

2. else
3. xj := Select(X);
4. for each a ∈ Dj do
5. F ′ := {f(xj = a) | f ∈ F};
6. X ′ := X − {xj}; D′ := D − {Dj};
7. if ubf � LBF(X ′,D′,F ′) then
8. MO-BB (P ′ = (X ′,D′,F ′),ubf);
9. endif
10. endfor
11. endif
endprocedure
function MO-RDS(P) return frontier
12. rds[n + 1] := {~0};
13. for each i from n downto 1 do
14. rds[i] :=UBF(rds[i + 1]);
15. MO-BB(Pi,rds[i]);
16. endfor
17. return rds[1];
endfunction
function SMO-RDS(P) return frontier
18. rds[n + 1] := {~0};
19. for each i from n downto 1 do
20. for each a ∈ Di do
21. rds[i, a] :=UBF(rds[i + 1], a);
22. MO-BB(Pia, rds[i, a]);
23. endfor
24. rds[i] := ‖

S

a∈Di
rds[i, a]‖

25. endfor
26. return rds[1];
endfunction

Figure 2: Multi-objective algorithms.

in F as a set of completely assigned functions) is included
in ubf and dominated vectors are removed (line 1). If X is
not empty, an arbitrary unassigned variable xj is selected2

(line 3). Then, the algorithm sequentially attempts the as-
signment of its values to the cost functions in F (line 4-6).
A lower bound frontier of the cost of the current assignment
is computed with the bounding evaluation function LBF and
compared with ubf (line 7). If the backtracking condition
does not hold, the search procedure proceeds by making a
recursive call (line 8). Otherwise, the algorithm detects a
dead-end and backtracks.

The performance of the search algorithm depends on the
quality of the upper and lower bound frontiers, because tight
bounds anticipate dead-ends and prune at early stages of the
search. The simplest ubf is the empty set. Better approx-
imations can be obtained, for example, with local search
heuristics (Ehrgott & Gandibleux 2002). Let Ai−1

1 be the
current partial assignment and P (Ai−1

1) be the current sub-
problem. The simplest lbf is a singleton frontier made by
the sum of cost vectors from completely instantiated cost

2For consistency with the next section, we assume that variables
are selected in lexicographic order.

functions,

lbfs =
∑

f∈P (Ai−1

1
)

|f |=0

f

Borrowing an idea of (Freuder & Wallace 1992) in the
mono-objective context, the previous lower bound can be
improved. Let xk, i ≤ k ≤ n be an unassigned variable and
a ∈ Dk one of its domain values,

icka =
∑

f∈P (Ai−1

1
)

var(f)={xk}

f(xk = a)

is the cost of the singleton assignment (xk = a), and
ick = ‖

⋃

a∈Dk
icka‖ is the set of the best incomparable

alternatives that can be obtained if xk is assigned to any of
its domain values. The following expression is a valid lower
bound frontier,

lbf = lbfs +

n
∑

k=i

ick

In the next section, we describe multi-objective Russian
Doll Search which computes more accurate lower and upper
bound frontiers.

Multi-objective Russian Doll Search
Russian Doll Search (RDS) (Verfaillie, Lemaı̂tre, & Schiex
1996) is a branch-and-boundalgorithm which invests in high
quality upper and lower bounds. It was originally proposed
for mono-objective problems. The idea of RDS is to replace
one search by n successive searches on nested subproblems,
where n is the number of variables in the problem. The
first subproblem involves only one variable. Each successive
subproblem results from adding one variable to the previous
one. Finally, the last subproblem is the whole problem. The
key of the algorithm is that the optimal assignments of all the
solved subproblems are systematically recorded in order to
help future searches. In particular, each search can use the
optimal cost of previous subproblems as a lower bound of
the correponding partial assignment. Moreover, each search
uses the extension of the optimal assignment of the previous
subproblem to improve its upper bound. In the following,
we generalize it to the multi-objective context.

Let P = (X,D,F) be a MO-WCSP. As in the origi-
nal mono-objective paper we assume that F does not con-
tain unary cost functions. Otherwise, the definition of icka

needs to be modified in order to disregard those original
unary functions. Consider an arbitrary static variable or-
dering, that we assume lexicographic, subproblem Pi is
the problem induced by variables (xi, . . . , xn). Formally,
Pi = ((xi, . . . , xn), (Di, . . . , Dn), {f ∈ F | var(f) ⊆
{xi, . . . , xn}}). Note that P1 = P . Let Fi(X

n
i) and Ei be

the objective function and the efficient frontier of Pi, respec-
tively. The essence of RDS is to replace the resolution of P
by n successive resolutions on nested subproblems from Pn

to P1, where information from previous resolutions is used
in the computation of new upper and lower bounds.

Multi-objective Russian Doll Search (MO-RDS) is de-
scribed in Figure 2 (lines 12-17). It uses an array of fron-
tiers rds. Frontier rds[i] plays the role of ubf during
the resolution of subproblem Pi, so at the end of its reso-
lution it will contain its efficient frontier Ei. Thus, the ef-
ficient frontier of the original problem will be in rds[1].
The algorithm solves Pi in decreasing order of i (line 13).
First, rds[i] is initialized with a valid upper bound fron-
tier (line 14). Then, Pi is solved with a call to MO-BB (line
15), which computes a specific russian doll lbf. These two
steps are further developed in the two following subsections.

Lower bound frontier
Consider an execution of MO-RDS. Let Pi be the subprob-
lem that is being solved by MO-BB. Let xj be the variable
that is currently considered for assignment (namely, X

j−1
i

and Xn
j are the set of assigned and unassigned variables,

respectively). MO-BB uses the following lower bound fron-
tier,

lbfrds = lbfs +

n
∑

k=j

ick + rds[j]

which incorporates rds[j], the efficient frontier of Pj .

Theorem 1 lbfrds is a valid lower bound frontier.

Initial upper bound frontier
As noted in classical RDS, the resolution of Pi+1 by MO-
RDS contains useful information for the initialization of
rds[i]. The idea is that any extension of an optimal assign-
ment of Pi+1 to variable xi is likely to be near-optimal in
Pi (because the two problems are very similar). Then, MO-
RDS computes as initial upper bound frontier of Pi (Figure
2, line 14),

ubfi = ‖
⋃

a∈Di

~v∈rds[i+1]

Fi((xi = a) · An
i+1(~v))‖

where An
i+1(~v) is an optimal assignment with respect to

Pi+1 such that Fi+1(A
n
i+1(~v)) = ~v.

Theorem 2 ubfi is a valid upper bound frontier.

Property 1 In a problem with a single objective function
(i.e., p = 1), the algorithm MO-RDS is equivalent to RDS.

Specialized MO-RDS
As shown in the mono-objective case, it may be con-
venient to ask russian doll to solve more subproblems
in order to obtain more accurate lower and upper bound
frontiers. Let Pia be subproblem Pi in which the do-
main of xi is restricted to value a. Formally, Pia =
((xi, . . . , xn), ({a}, Di+1, . . . , Dn), {f ∈ F | var(f) ⊆
{xi, . . . , xn}}). Specialized RDS (SRDS) (Meseguer &
Sanchez 2001) solves each Pia. Figure 2 (lines 18-26)
describes Specialized Multi-objective Russian Doll Search
(SMO-RDS). The algorithm solves Pia for each variable
i from n down to 1 and for each domain value a ∈ Di

(lines 19-20). Each Pia is optimally solved using MO-BB

(line 22) and, at the end of the resolution, rds[i, a] is its
efficient frontier. Note that the efficient frontier of Pi is
rds[i] = ‖

⋃

a∈Di
rds[i, a]‖. Therefore, the efficient fron-

tier of the overall problem is the union of non-dominated
costs of P1a for each a ∈ D1 (line 26).

When solving Pia and A
j−1
i (with i < j) being the cur-

rent partial assignment, the lower bound frontier of MO-
SRDS is,

lbfsrds = lbfs +
n

∑

k=j+1

ick +
∥

∥

∥

⋃

b∈Dj

(

icjb + rds[j, b]
)

∥

∥

∥

Theorem 3 lbfsrds is a valid lower bound frontier.

The following theorem shows that the lower bound fron-
tier of SMO-RDS is always tighter than the lower bound of
MO-RDS.

Theorem 4 lbfrds ≤ lbfsrds.

Before solving Pia, SMO-RDS initializes rds[i, a] with
a valid upper bound frontier (line 21). The initialization fol-
lows the same idea as in MO-RDS. Each efficient solution of
P(i+1)b is extended to variable xi assigned to a. Formally,

ubfia = ‖
⋃

~v∈rds[i+1]

{Fi((xi = a) · An
i+1(~v))}‖

Theorem 5 ubfia is a valid upper bound frontier.

Experiments
We test the performance of MO-SRDS in the SPOT5 bench-
mark (Bensana et al. 1996). These instances model the
scheduling of a satellite that orbits the earth while taking
photographs requested by different customers. Since it is
impossible to fulfil all the requests, the problem is to select
the best subset of photographs that the satellite will actu-
ally take. The selected subset of photographs must satisfy a
large number of imperative constraints and at the same time
maximize the importance of selected photographs (which is
modelled with unary cost functions). It is a mono-objective
optimization problem.

SPOT5 instances can be divided into single and multiple
orbit. In single orbit instances imperative constraints are bi-
nary and ternary. RDS and SRDS have proved to be the
most efficient methods for this class of instances (Verfaillie,
Lemaı̂tre, & Schiex 1996). Multiple orbit instances have an
additional constraint imposed by the amount of memory re-
quired to store the different photographs and the on-board
storage limit. This type of constraints are usually called ca-
pacity constraints and have the form

∑

i=1..n ci(xi) < K,
where ci(xi) is the memory consumption of decision xi and
K is the storage limit. Multiple-orbit instances are very
challenging and remain unsolved (the only exception is in-
stance 1502 where the capacity constraint is irrelevant be-
cause it can be trivially satisfied). In the following, we will
focus on multiple orbit instances.

First, it is important to note that RDS and SRDS cannot
solve these instances in reasonable time because the capac-
ity constraint is ignored in the different subproblems Pi until

i = 1. Consequently, optimal solutions of the different sub-
problems Pi (i > 1) provide very low contributions to the
lower bound of P : their ignorance of the capacity constraint
allows them to take many space-consuming pictures.

A second observation is that these instances can be solved
as if they were bi-objective, the memory consumption being
the second objective. The solution of the original mono-
objective instance is the efficient solution of the bi-objective
version such that the value of the second objective does not
surpass K, and the value of the first objective is minimum.

Solving these instances as bi-objective may seem a bad
option, since we are only concerned with one point of the
efficient frontier. However, there is a very important struc-
tural property: with the mono-objective point of view the
interaction graph is connected (it is a clique, because the
capacity constraint connects all the variables), but with the
bi-objective point of view the interaction graph is made of
several independent parts that can be solved independently.
Note that any previous attempt to solve this instances has
treated them as mono-objective and has failed.

In our experiments, we will refer to subproblems with the
following notation: X(i, j) denotes instance X restricted to
the subset of consecutive variables i . . . j. When a subprob-
lem coincides with a connected component of the overall
problem (in the multi-objective sense), we will indicate it as
X(i, j)∗. It is important to note that all the multiple orbit
instances have been derived from the largest instance 1407
reducing either the number of variables or the number of
constraints. As a result, it turns out that the same subprob-
lem may have different names with our notation. When this
is the case, we will name it as the subproblem coming from
instance 1407.

In our comparison, we consider the following solving al-
ternatives:

• ILOGSOLVER. A commercial solver that incorporates
most state-of-the-art constraint programming techniques.

• MOBBfdac. A branch-and-bound solver that enforces
FDAC (Larrosa & Schiex 2003) independently in each ob-
jective function.

• MOBBmombe. A branch-and-bound solver that uses
multi-objective mini-buckets (Rollon & Larrosa 2006a) as
a bounding evaluation function.

• MO-RDS and SMO-RDS.

We break the multiple orbit SPOT5 instances into subin-
stances and run the five algorithms on them with a time limit
of one hour. Figure 3 reports the results. Subinstances
which are connected components with less than 20 vari-
ables or with trivially satisfiable capacity constraints can be
solved almost instantly by any method and we do not report
them. The first column of the figure indicates the name of
each instance. The second column tells the number of con-
straints. The following columns report cpu time in seconds
required by each algorithm . Symbol ”-” indicates that the
algorithm cannot solve the subproblem within the time limit.
As can be observed, ILOGSOLVER is the worst option and
can only solve two of the instances. The explanation is that
it has been conceived for constraint satisfaction problems

Instance constr Time (sec.)

ILOG fdac mombe mo-rds smo-rds

1506(0,150) 1440 - - - - 2562

1506(151,228) 1107 - - - 424 2412

1506(229,317) 1349 - - - 90 62

1506(679,761)∗ 1243 - - - 1 1

1407(0,147) 1442 - - - - 1625

1407(148,247) 1678 - - 866 2545

1407(248,378) 3063 - - - 366 680

1407(379,409)∗ 220 - 2205 2 0 0

1407(413,429)∗ 87 18 2 0 0 0

1407(447,469)∗ 129 40 0 0 0 0

1407(494,553)∗ 129 - - - 267 2980

1407(580,696) 2299 - - - - 1764

1407(700,761) 445 - - - 7 3

1407(762,878)∗ 2708 - - - 27 96

Figure 3: Experimental results on capacity constraints sub-
problems. Time limit 3600 seconds.

Instance vars constr. lower bound

1506 940 15240 344556

1401 488 10963 441117

1403 665 13616 441271

1405 855 18258 441470

1407 1057 21786 441634

Figure 4: Lower bounds for SPOT5 instances. Time limit
3600 seconds.

and does not handle well the optimization nature of these in-
stances. The second worst solver is MOBBfdac. The lower
bounding function of this solver has been proved very con-
venient in mono-objective optimization problems. However,
when dealing with multi-objective problems it loses accu-
racy, because it treats each objective independently. Solvers
MOBBmombe, MO-RDS and SMO-RDS are the only ones
whose lower bounding functions exploit the multi-objective
nature of the problem. However, MOBBmombe performs
poorly, because its lower bound is not very tight and does
not prune well in this benchmark. MO-RDS and SMO-RDS
are clearly the best alternatives for this benchmark. This
is somehow expectable, since mono-objective RDS already
proved its efficiency in the single orbit instances and our
algorithms are a natural generalization. The efficiency of
MO-RDS and SMO-RDS depends on the structure of each
subinstance. When the lower bound of a given subproblem
Pi is similar to the lower bound of each subproblem Pia,
MO-RDS outperforms SMO-RDS because the latter cannot
take advantage of the specialized lower bound. However,
when this is not the case, SMO-RDS computes a tighter
lower bound and, as a result, SMO-RDS is more efficient
than MO-RDS.

Figure 4 reports the lower bound that we obtain for each
complete instance. The lower bound is computed as follows:
for each complete instance we sum the efficient frontier of
each subproblem. This is a lower bound frontier of the bi-
objective version of the instance. Then, we discard from the
frontier all the cost vectors that surpass the on-board storage
limit. We then take the cost vector with the lowest value in

Instance constr. SMO-RDS (sec.)

1504(0,183)∗ 1329 1114

1504(184,206)∗ 112 0

1504(356,461)∗ 105 13418

1504(462,508)∗ 301 0

Figure 5: Experimental results on instance 1504.

the original objective function.
In our second experiment, we focus on the resolution of

instance 1504. We solve to optimality each connected part
of the problem using SMO-RDS with no time restriction.
Figure 5 reports the cpu time for the most difficult subin-
stances. The most difficult piece, 1504(356, 461), is solved
in less than 4 hours. As a consequence, we can sum the effi-
cient frontier of each subproblem and extract the solution of
the original problem: 161301. This instance is solved with
SMO-RDS for the first time.

Related Work
Recently, some authors have considered multi-objective op-
timization inside of the constraint programming paradigm.
For instance, (Rollon & Larrosa 2006a) extend an inference
algorithm called bucket elimination to multi-objective prob-
lems. As could be expected, the algorithm suffers from a
high space complexity and can only be used in problems
with a small induced width. The alternative to inference
is search. (Gavanelli 2002) introduced a basic branch and
bound algorithm and proposed the use of quad-trees to store
upper bound frontiers. His algorithm is similar to our MO-
BB (Figure 2) using the simplest lower bound function.
A more sophisticated lower bound function is multiobjec-
tive mini-bucket elimination (mo-mbe) (Rollon & Larrosa
2006a) which is an approximation of bucket elimination.
The main contribution of our work is also the definition of
a sophisticated lower bound, embeded in the mo-rds algo-
rithm. One can easily observe that mo-rds is always stronger
than mo-mbe. However, the time complexity of computing
mo-rds is exponential, while the time complexity of com-
puting mo-mbe is polynomial. It is important to note that
both lower bounds has been proved to be useful for different
classes of problems.

The idea of revealing and exploiting the multi-objective
nature of problems that are not originally defined as multi-
objective is not new. (Junker 2006) and (Rollon & Lar-
rosa 2006b) apply this idea to pure constraint satisfaction
problems (namely, without any objective function) in which
some (at least two) of the constraints can be encoded as
F (X) < K and their nature makes us believe that it is dif-
ficult to satisfy all of them simultaneously. The main differ-
ence with respect our work is the lower bound used. (Junker
2006) uses the simplest lower bound and finds the efficient
frontier in a given order. (Rollon & Larrosa 2006b) uses
mo-mbe. Our approach uses mo-rds and smo-rds.

Conclusion
This paper has two contributions. The first one is algorith-
mic, since we extend RDS and SRDS from mono-objective

to multi-objective optimization. The second contribution
comes from our empirical work, where we show that our
multi-objective RDS is an efficient alternative in an im-
portant class of problems. Moreover, using multiple or-
bit SPOT5 instances, we illustrate that sometimes it may
be convenient to reformulate pure satisfaction or mono-
objective optimization problems as multi-objective prob-
lems. This may be counterintuitive at first sight because
multi-objective optimization is in general more difficult
than mono-objective optimization. However, we show that
the multi-objective perspective may bring to light desirable
structural properties.

It is known that russian doll algorithms are very sen-
sitive to heuristic decisions (Meseguer & Sanchez 2001).
Our current implementation of SMO-RDS is far from be-
ing fully optimized with respect to available mono-objective
versions3. Thus, we plan to accelerate our solver and im-
prove our results on the multiple orbit SPOT5 instances. We
expect to solve other open instances in the near future.

References
Apt, K. 2003. Principles of Constraint Programming.
Cambridge: Cambridge University Press.
Bensana, E.; Verfaillie, G.; Agnse, J.; Bataille, N.; and
Blumstein, D. 1996. Exact and inexact methods for the
daily management of an earth observation satellite. In In
Proc. 4 th Intl. Symposium on Space Mission Operations
and Ground Data Systems, Munich, Germany, 1996.
Ehrgott, M., and Gandibleux, X. 2002. Multiple Crite-
ria Optimization. State of the Art. Annotated Bibliographic
Surveys. Kluwer Academic Publishers.
Freuder, E., and Wallace, R. 1992. Partial constraint satis-
faction. Artificial Intelligence 58:21–70.
Gavanelli, M. 2002. An algorithm for multi-criteria opti-
mization in csps. In Proceedings of ECAI’2002, 136–140.
Junker, U. 2006. Preference-based inconsistency prov-
ing: When the failure of the best is sufficient. In Proc. of
ECAI’06, 118–122.
Larrosa, J., and Schiex, T. 2003. In the quest of the best
form of local consistency for weighted csp. In Proc. of the
18th IJCAI, 239–244.
Meseguer, P., and Sanchez, M. 2001. Specializing russian
doll search. In CP’01, 464–478.
Rollon, E., and Larrosa, J. 2006a. Bucket elimination for
multiobjective optimization problems. Journal of Heuris-
tics 12(4-5):307–328.
Rollon, E., and Larrosa, J. 2006b. Multi-objective prop-
agation in constraint programming. In Proc. of ECAI’06,
128–132.
Rossi, F.; van Beek, P.; and Walsh, T. 2006. Handbook of
Constraint Programming. Elsevier. chapter 9.
Verfaillie, G.; Lemaı̂tre, M.; and Schiex, T. 1996. Russian
doll search. In AAAI-96, 181–187.

3ftp://ftp.cert.fr/pub/lemaitre/LVCSP

